José Carlos Morante-Filho, Clarisse Dias Cruz, Maíra Benchimol, Fabrine Vitória Almeida, Rosilene Aparecida de Oliveira
{"title":"将景观结构变化与大西洋残余森林边缘和内部的昆虫食草动物联系起来。","authors":"José Carlos Morante-Filho, Clarisse Dias Cruz, Maíra Benchimol, Fabrine Vitória Almeida, Rosilene Aparecida de Oliveira","doi":"10.1002/eap.3026","DOIUrl":null,"url":null,"abstract":"<p>Human activities have triggered profound changes in natural landscapes, resulting in species loss and disruption of pivotal ecological interactions such as insect herbivory. This antagonistic interaction is affected by complex pathways (e.g., abundance of herbivores and predators, plant chemical defenses, and resource availability), but the knowledge regarding how forest loss and fragmentation affect insect herbivory in human-modified tropical landscapes still remains poorly understood. In this context, we assessed multi-pathways by which changes in landscape structure likely influence insect herbivory in 20 Atlantic forest fragments in Brazil. Using path analysis, we estimated the direct effects of forest cover and forest edge density, and the indirect effect via canopy openness, number of understory plants and phenolic compounds, on leaf damage in understory plants located in the edge and interior of forest fragments. In particular, plants located in forest edges experienced greater leaf damage than interior ones. We observed that landscape edge density exerted a positive and direct effect on leaf damage in plants sampled at the edge of forest fragments. Our findings also indicated that forest loss and increase of edge density led to an increase in the canopy opening in the forest interior, which causes a reduction in the number of understory plants and, consequently, an increase in leaf damage. In addition, we detected that phenolic compounds negatively influence leaf damage in forest interior plants. Given the increasing forest loss in tropical regions, in which forest fragments become stranded in highly deforested, edge-dominated and degraded landscapes, our study highlights the pervasive enhancement in insect herbivory in remaining forest fragments—especially along forest edges and canopy gaps in the forest interior. As a result, increased herbivory is likely to affect forest regeneration and accelerate the ecological meltdown processes in these highly deforested and disturbed anthropogenic landscapes.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"34 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking changes in landscape structure to insect herbivory in forest edges and interiors of Atlantic Forest remnants\",\"authors\":\"José Carlos Morante-Filho, Clarisse Dias Cruz, Maíra Benchimol, Fabrine Vitória Almeida, Rosilene Aparecida de Oliveira\",\"doi\":\"10.1002/eap.3026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human activities have triggered profound changes in natural landscapes, resulting in species loss and disruption of pivotal ecological interactions such as insect herbivory. This antagonistic interaction is affected by complex pathways (e.g., abundance of herbivores and predators, plant chemical defenses, and resource availability), but the knowledge regarding how forest loss and fragmentation affect insect herbivory in human-modified tropical landscapes still remains poorly understood. In this context, we assessed multi-pathways by which changes in landscape structure likely influence insect herbivory in 20 Atlantic forest fragments in Brazil. Using path analysis, we estimated the direct effects of forest cover and forest edge density, and the indirect effect via canopy openness, number of understory plants and phenolic compounds, on leaf damage in understory plants located in the edge and interior of forest fragments. In particular, plants located in forest edges experienced greater leaf damage than interior ones. We observed that landscape edge density exerted a positive and direct effect on leaf damage in plants sampled at the edge of forest fragments. Our findings also indicated that forest loss and increase of edge density led to an increase in the canopy opening in the forest interior, which causes a reduction in the number of understory plants and, consequently, an increase in leaf damage. In addition, we detected that phenolic compounds negatively influence leaf damage in forest interior plants. Given the increasing forest loss in tropical regions, in which forest fragments become stranded in highly deforested, edge-dominated and degraded landscapes, our study highlights the pervasive enhancement in insect herbivory in remaining forest fragments—especially along forest edges and canopy gaps in the forest interior. As a result, increased herbivory is likely to affect forest regeneration and accelerate the ecological meltdown processes in these highly deforested and disturbed anthropogenic landscapes.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":\"34 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eap.3026\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.3026","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Linking changes in landscape structure to insect herbivory in forest edges and interiors of Atlantic Forest remnants
Human activities have triggered profound changes in natural landscapes, resulting in species loss and disruption of pivotal ecological interactions such as insect herbivory. This antagonistic interaction is affected by complex pathways (e.g., abundance of herbivores and predators, plant chemical defenses, and resource availability), but the knowledge regarding how forest loss and fragmentation affect insect herbivory in human-modified tropical landscapes still remains poorly understood. In this context, we assessed multi-pathways by which changes in landscape structure likely influence insect herbivory in 20 Atlantic forest fragments in Brazil. Using path analysis, we estimated the direct effects of forest cover and forest edge density, and the indirect effect via canopy openness, number of understory plants and phenolic compounds, on leaf damage in understory plants located in the edge and interior of forest fragments. In particular, plants located in forest edges experienced greater leaf damage than interior ones. We observed that landscape edge density exerted a positive and direct effect on leaf damage in plants sampled at the edge of forest fragments. Our findings also indicated that forest loss and increase of edge density led to an increase in the canopy opening in the forest interior, which causes a reduction in the number of understory plants and, consequently, an increase in leaf damage. In addition, we detected that phenolic compounds negatively influence leaf damage in forest interior plants. Given the increasing forest loss in tropical regions, in which forest fragments become stranded in highly deforested, edge-dominated and degraded landscapes, our study highlights the pervasive enhancement in insect herbivory in remaining forest fragments—especially along forest edges and canopy gaps in the forest interior. As a result, increased herbivory is likely to affect forest regeneration and accelerate the ecological meltdown processes in these highly deforested and disturbed anthropogenic landscapes.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.