ninjaCap:用于功能性近红外光谱和脑电图脑成像的可完全定制的三维打印头盔。

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2024-07-01 Epub Date: 2024-08-27 DOI:10.1117/1.NPh.11.3.036601
Alexander von Lühmann, Sreekanth Kura, Walker Joseph O'Brien, Bernhard B Zimmermann, Sudan Duwadi, De'Ja Rogers, Jessica E Anderson, Parya Farzam, Cameron Snow, Anderson Chen, Meryem A Yücel, Nathan Perkins, David A Boas
{"title":"ninjaCap:用于功能性近红外光谱和脑电图脑成像的可完全定制的三维打印头盔。","authors":"Alexander von Lühmann, Sreekanth Kura, Walker Joseph O'Brien, Bernhard B Zimmermann, Sudan Duwadi, De'Ja Rogers, Jessica E Anderson, Parya Farzam, Cameron Snow, Anderson Chen, Meryem A Yücel, Nathan Perkins, David A Boas","doi":"10.1117/1.NPh.11.3.036601","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts such as those in electroencephalography (EEG). Custom, manually prepared probe layouts on textile caps are often imprecise and labor intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling the accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts while reducing costs and manual labor. Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Our ninjaCap method offers <math><mrow><mn>2.7</mn> <mo>±</mo> <mn>1.8</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"036601"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348010/pdf/","citationCount":"0","resultStr":"{\"title\":\"ninjaCap: a fully customizable and 3D printable headgear for functional near-infrared spectroscopy and electroencephalography brain imaging.\",\"authors\":\"Alexander von Lühmann, Sreekanth Kura, Walker Joseph O'Brien, Bernhard B Zimmermann, Sudan Duwadi, De'Ja Rogers, Jessica E Anderson, Parya Farzam, Cameron Snow, Anderson Chen, Meryem A Yücel, Nathan Perkins, David A Boas\",\"doi\":\"10.1117/1.NPh.11.3.036601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts such as those in electroencephalography (EEG). Custom, manually prepared probe layouts on textile caps are often imprecise and labor intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling the accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts while reducing costs and manual labor. Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Our ninjaCap method offers <math><mrow><mn>2.7</mn> <mo>±</mo> <mn>1.8</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 3\",\"pages\":\"036601\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.3.036601\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.3.036601","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

传感器的精确放置对于无创脑部成像至关重要,尤其是对于功能性近红外光谱(fNIRS)和弥散光学断层成像(DOT)而言,因为它们缺乏像脑电图(EEG)那样的标准化布局。在纺织帽上定制手工准备的探头布局往往不精确,而且劳动强度大。我们介绍了一种创建个性化 3D 打印头罩的方法,可将三维大脑坐标精确转换为二维可打印面板,用于定制 fNIRS 和 EEG 传感器布局,同时降低成本和人工劳动强度。我们的方法使用基于图集或特定对象的头部模型和弹簧松弛算法将三维坐标平移到二维面板上,并使用 10-5 EEG 坐标作为参考。这一过程可确保几何保真度,这对探头的精确放置至关重要。探针的几何形状和支架类型均可定制,并直接打印在帽盖上,使该方法不受仪器制造商和探针类型的影响。我们的 ninjaCap 方法可提供 2.7 ± 1.8 毫米的探针放置精度。在过去的五年中,我们已经开发出这种方法,并通过 50 多种瓶盖型号和 500 多名参与者进行了验证。基于云计算的 ninjaCap 生成管道和详细说明现在可在 openfnirs.org 上获取。ninjaCap 标志着我们在创建个性化神经成像帽方面取得了重大进展,在提高探针放置准确性的同时降低了成本和劳动力,从而减少了研究中的变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ninjaCap: a fully customizable and 3D printable headgear for functional near-infrared spectroscopy and electroencephalography brain imaging.

Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts such as those in electroencephalography (EEG). Custom, manually prepared probe layouts on textile caps are often imprecise and labor intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling the accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts while reducing costs and manual labor. Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Our ninjaCap method offers 2.7 ± 1.8    mm probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信