{"title":"目标大小对生物力学和认知负荷以及虚拟现实互动任务表现的影响。","authors":"Kiana Kia, Jaejin Hwang, Jeong Ho Kim","doi":"10.1080/00140139.2024.2396038","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the effects of target sizes on biomechanical and cognitive load and the performance of virtual reality (VR) interactions. In a repeated-measures laboratory study, each of the twenty participants performed standardised VR tasks with three different target sizes: small, medium, and large. During the VR tasks, biomechanical load in the neck and shoulders (joint angles, joint moments, and muscle activity), cognitive load (perceived workload and cognitive stress), and task performance (completion time) were collected. The neck and shoulder joint angles, joint moments, and muscle activities were greater with the large targets compared to the medium and small targets. Moreover, the larger VR targets caused greater temporal demand and longer task completion time compared to the other target sizes. These findings indicate that target sizes in VR interfaces play important roles in biomechanical and cognitive load as well as task performance.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1207-1221"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of target sizes on biomechanical and cognitive load and task performance of virtual reality interactions.\",\"authors\":\"Kiana Kia, Jaejin Hwang, Jeong Ho Kim\",\"doi\":\"10.1080/00140139.2024.2396038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the effects of target sizes on biomechanical and cognitive load and the performance of virtual reality (VR) interactions. In a repeated-measures laboratory study, each of the twenty participants performed standardised VR tasks with three different target sizes: small, medium, and large. During the VR tasks, biomechanical load in the neck and shoulders (joint angles, joint moments, and muscle activity), cognitive load (perceived workload and cognitive stress), and task performance (completion time) were collected. The neck and shoulder joint angles, joint moments, and muscle activities were greater with the large targets compared to the medium and small targets. Moreover, the larger VR targets caused greater temporal demand and longer task completion time compared to the other target sizes. These findings indicate that target sizes in VR interfaces play important roles in biomechanical and cognitive load as well as task performance.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"1207-1221\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2396038\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2396038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
The effects of target sizes on biomechanical and cognitive load and task performance of virtual reality interactions.
This study evaluated the effects of target sizes on biomechanical and cognitive load and the performance of virtual reality (VR) interactions. In a repeated-measures laboratory study, each of the twenty participants performed standardised VR tasks with three different target sizes: small, medium, and large. During the VR tasks, biomechanical load in the neck and shoulders (joint angles, joint moments, and muscle activity), cognitive load (perceived workload and cognitive stress), and task performance (completion time) were collected. The neck and shoulder joint angles, joint moments, and muscle activities were greater with the large targets compared to the medium and small targets. Moreover, the larger VR targets caused greater temporal demand and longer task completion time compared to the other target sizes. These findings indicate that target sizes in VR interfaces play important roles in biomechanical and cognitive load as well as task performance.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.