Hunor Csala, Omid Amili, Roshan M. D'Souza, Amirhossein Arzani
{"title":"恢复噪声和缺失四维血流 MRI 数据的机器学习方法比较。","authors":"Hunor Csala, Omid Amili, Roshan M. D'Souza, Amirhossein Arzani","doi":"10.1002/cnm.3858","DOIUrl":null,"url":null,"abstract":"<p>Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI), which enables noninvasive time-dependent velocity measurements within large vessels. However, several limitations hinder the usability of 4D flow MRI and other experimental methods for quantitative hemodynamics analysis. These mainly include measurement noise, corrupt or missing data, low spatiotemporal resolution, and other artifacts. Traditional filtering is routinely applied for denoising experimental blood flow data without any detailed discussion on why it is preferred over other methods. In this study, filtering is compared to different singular value decomposition (SVD)-based machine learning and autoencoder-type deep learning methods for denoising and filling in missing data (imputation). An artificially corrupted and voxelized computational fluid dynamics (CFD) simulation as well as in vitro 4D flow MRI data are used to test the methods. SVD-based algorithms achieve excellent results for the idealized case but severely struggle when applied to in vitro data. The autoencoders are shown to be versatile and applicable to all investigated cases. For denoising, the in vitro 4D flow MRI data, the denoising autoencoder (DAE), and the Noise2Noise (N2N) autoencoder produced better reconstructions than filtering both qualitatively and quantitatively. Deep learning methods such as N2N can result in noise-free velocity fields even though they did not use clean data during training. This work presents one of the first comprehensive assessments and comparisons of various classical and modern machine-learning methods for enhancing corrupt cardiovascular flow data in diseased arteries for both synthetic and experimental test cases.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3858","citationCount":"0","resultStr":"{\"title\":\"A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data\",\"authors\":\"Hunor Csala, Omid Amili, Roshan M. D'Souza, Amirhossein Arzani\",\"doi\":\"10.1002/cnm.3858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI), which enables noninvasive time-dependent velocity measurements within large vessels. However, several limitations hinder the usability of 4D flow MRI and other experimental methods for quantitative hemodynamics analysis. These mainly include measurement noise, corrupt or missing data, low spatiotemporal resolution, and other artifacts. Traditional filtering is routinely applied for denoising experimental blood flow data without any detailed discussion on why it is preferred over other methods. In this study, filtering is compared to different singular value decomposition (SVD)-based machine learning and autoencoder-type deep learning methods for denoising and filling in missing data (imputation). An artificially corrupted and voxelized computational fluid dynamics (CFD) simulation as well as in vitro 4D flow MRI data are used to test the methods. SVD-based algorithms achieve excellent results for the idealized case but severely struggle when applied to in vitro data. The autoencoders are shown to be versatile and applicable to all investigated cases. For denoising, the in vitro 4D flow MRI data, the denoising autoencoder (DAE), and the Noise2Noise (N2N) autoencoder produced better reconstructions than filtering both qualitatively and quantitatively. Deep learning methods such as N2N can result in noise-free velocity fields even though they did not use clean data during training. This work presents one of the first comprehensive assessments and comparisons of various classical and modern machine-learning methods for enhancing corrupt cardiovascular flow data in diseased arteries for both synthetic and experimental test cases.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3858\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3858\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3858","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data
Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI), which enables noninvasive time-dependent velocity measurements within large vessels. However, several limitations hinder the usability of 4D flow MRI and other experimental methods for quantitative hemodynamics analysis. These mainly include measurement noise, corrupt or missing data, low spatiotemporal resolution, and other artifacts. Traditional filtering is routinely applied for denoising experimental blood flow data without any detailed discussion on why it is preferred over other methods. In this study, filtering is compared to different singular value decomposition (SVD)-based machine learning and autoencoder-type deep learning methods for denoising and filling in missing data (imputation). An artificially corrupted and voxelized computational fluid dynamics (CFD) simulation as well as in vitro 4D flow MRI data are used to test the methods. SVD-based algorithms achieve excellent results for the idealized case but severely struggle when applied to in vitro data. The autoencoders are shown to be versatile and applicable to all investigated cases. For denoising, the in vitro 4D flow MRI data, the denoising autoencoder (DAE), and the Noise2Noise (N2N) autoencoder produced better reconstructions than filtering both qualitatively and quantitatively. Deep learning methods such as N2N can result in noise-free velocity fields even though they did not use clean data during training. This work presents one of the first comprehensive assessments and comparisons of various classical and modern machine-learning methods for enhancing corrupt cardiovascular flow data in diseased arteries for both synthetic and experimental test cases.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.