{"title":"在前列腺癌的临床 HDR 近距离放射治疗中,对用于停留位置监测的集成电磁跟踪进行评估。","authors":"","doi":"10.1016/j.radonc.2024.110501","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Electromagnetic Tracking (EMT) technology has been integrated in a prototype high-dose-rate brachytherapy (HDR-BT) afterloading device. Its potential for dwell position (DP) monitoring has earlier been demonstrated in prostate phantoms. However, its performance for prostate BT in the clinical setting remains to be assessed.</p></div><div><h3>Aim</h3><p>Assess the reliability and value of EMT measurements in transrectal ultrasound-based (TRUS-based) and computed tomography-based (CT-based) prostate HDR-BT.</p></div><div><h3>Methods</h3><p>EMT measurements were conducted on 20 patients undergoing dual-fraction prostate HDR-BT monotherapy. In each treatment fraction an individual TRUS-based or CT-based treatment plan was generated. The measurements were compared to DPs of manually reconstructed needles in those TRUS-based or CT-based treatment plans. An internal reference sensor was also placed in one needle to assess internal movement levels and its potential for movement correction.</p></div><div><h3>Results</h3><p>For TRUS-based treatments, median Euclidean distances (ED) of 1.00 mm were observed between EMT measurements and manual DP determination. Reference sensor movement was minimal at a median of 0.18 mm. For DPs measured in the CT-room and treatment room, median EDs of 1.60 mm and 2.24 mm compared to CT-based DP determination respectively were observed, indicating the system’s ability to detect changes in implant geometry over time and after patient repositioning. Median reference sensor movement of 0.97 mm was observed. Implementing reference sensor-based movement correction led to a significant but small decrease in ED for CT-based treatments.</p></div><div><h3>Conclusion</h3><p>EMT is suitable for TRUS-based prostate HDR-BT quality assurance and error detection. While EMT can identify changes in implant geometry in CT-based prostate HDR-BT treatments, it showed lower accuracy in this setting.</p></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167814024007710/pdfft?md5=23c3598426e4fe5e687002d166e3bfeb&pid=1-s2.0-S0167814024007710-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of integrated electromagnetic tracking for dwell position monitoring in a clinical HDR brachytherapy setting for prostate cancer\",\"authors\":\"\",\"doi\":\"10.1016/j.radonc.2024.110501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Electromagnetic Tracking (EMT) technology has been integrated in a prototype high-dose-rate brachytherapy (HDR-BT) afterloading device. Its potential for dwell position (DP) monitoring has earlier been demonstrated in prostate phantoms. However, its performance for prostate BT in the clinical setting remains to be assessed.</p></div><div><h3>Aim</h3><p>Assess the reliability and value of EMT measurements in transrectal ultrasound-based (TRUS-based) and computed tomography-based (CT-based) prostate HDR-BT.</p></div><div><h3>Methods</h3><p>EMT measurements were conducted on 20 patients undergoing dual-fraction prostate HDR-BT monotherapy. In each treatment fraction an individual TRUS-based or CT-based treatment plan was generated. The measurements were compared to DPs of manually reconstructed needles in those TRUS-based or CT-based treatment plans. An internal reference sensor was also placed in one needle to assess internal movement levels and its potential for movement correction.</p></div><div><h3>Results</h3><p>For TRUS-based treatments, median Euclidean distances (ED) of 1.00 mm were observed between EMT measurements and manual DP determination. Reference sensor movement was minimal at a median of 0.18 mm. For DPs measured in the CT-room and treatment room, median EDs of 1.60 mm and 2.24 mm compared to CT-based DP determination respectively were observed, indicating the system’s ability to detect changes in implant geometry over time and after patient repositioning. Median reference sensor movement of 0.97 mm was observed. Implementing reference sensor-based movement correction led to a significant but small decrease in ED for CT-based treatments.</p></div><div><h3>Conclusion</h3><p>EMT is suitable for TRUS-based prostate HDR-BT quality assurance and error detection. While EMT can identify changes in implant geometry in CT-based prostate HDR-BT treatments, it showed lower accuracy in this setting.</p></div>\",\"PeriodicalId\":21041,\"journal\":{\"name\":\"Radiotherapy and Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167814024007710/pdfft?md5=23c3598426e4fe5e687002d166e3bfeb&pid=1-s2.0-S0167814024007710-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiotherapy and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167814024007710\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814024007710","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Assessment of integrated electromagnetic tracking for dwell position monitoring in a clinical HDR brachytherapy setting for prostate cancer
Background
Electromagnetic Tracking (EMT) technology has been integrated in a prototype high-dose-rate brachytherapy (HDR-BT) afterloading device. Its potential for dwell position (DP) monitoring has earlier been demonstrated in prostate phantoms. However, its performance for prostate BT in the clinical setting remains to be assessed.
Aim
Assess the reliability and value of EMT measurements in transrectal ultrasound-based (TRUS-based) and computed tomography-based (CT-based) prostate HDR-BT.
Methods
EMT measurements were conducted on 20 patients undergoing dual-fraction prostate HDR-BT monotherapy. In each treatment fraction an individual TRUS-based or CT-based treatment plan was generated. The measurements were compared to DPs of manually reconstructed needles in those TRUS-based or CT-based treatment plans. An internal reference sensor was also placed in one needle to assess internal movement levels and its potential for movement correction.
Results
For TRUS-based treatments, median Euclidean distances (ED) of 1.00 mm were observed between EMT measurements and manual DP determination. Reference sensor movement was minimal at a median of 0.18 mm. For DPs measured in the CT-room and treatment room, median EDs of 1.60 mm and 2.24 mm compared to CT-based DP determination respectively were observed, indicating the system’s ability to detect changes in implant geometry over time and after patient repositioning. Median reference sensor movement of 0.97 mm was observed. Implementing reference sensor-based movement correction led to a significant but small decrease in ED for CT-based treatments.
Conclusion
EMT is suitable for TRUS-based prostate HDR-BT quality assurance and error detection. While EMT can identify changes in implant geometry in CT-based prostate HDR-BT treatments, it showed lower accuracy in this setting.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.