绿色植酸辅助合成用于高性能锂离子电池的 LiMn1-xFexPO4/C 阴极。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-08-19 DOI:10.3390/nano14161360
Yueying Li, Chenlu Hu, Zhidong Hou, Chunguang Wei, Jian-Gan Wang
{"title":"绿色植酸辅助合成用于高性能锂离子电池的 LiMn1-xFexPO4/C 阴极。","authors":"Yueying Li, Chenlu Hu, Zhidong Hou, Chunguang Wei, Jian-Gan Wang","doi":"10.3390/nano14161360","DOIUrl":null,"url":null,"abstract":"<p><p>As a promising cathode material, olivine-structured LiMnPO<sub>4</sub> holds enormous potential for lithium-ion batteries. Herein, we demonstrate a green biomass-derived phytic-acid-assisted method to synthesize a series of LiMn<sub>1-x</sub>Fe<sub>x</sub>PO<sub>4</sub>/C composites. The effect of Fe doping on the crystal structure and morphology of LiMnPO<sub>4</sub> particles is investigated. It is revealed that the optimal Fe doping amount of x = 0.2 enables a substantial enhancement of interfacial charge transfer ability and Li<sup>+</sup> ion diffusion kinetics. Consequently, a large reversible capacity output of 146 mAh g<sup>-1</sup> at 0.05 C and a high rate capacity of 77 mAh g<sup>-1</sup> at 2 C were acquired by the as-optimized LiMn<sub>0.8</sub>Fe<sub>0.2</sub>PO<sub>4</sub>/C cathode. Moreover, the LiMn<sub>0.8</sub>Fe<sub>0.2</sub>PO<sub>4</sub>/C delivered a specific capacity of 68 mAh g<sup>-1</sup> at 2 C after 500 cycles, with a capacity retention of 88.4%. This work will unveil a green synthesis route for advancing phosphate cathode materials toward practical implementation.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green Phytic Acid-Assisted Synthesis of LiMn<sub>1-x</sub>Fe<sub>x</sub>PO<sub>4</sub>/C Cathodes for High-Performance Lithium-Ion Batteries.\",\"authors\":\"Yueying Li, Chenlu Hu, Zhidong Hou, Chunguang Wei, Jian-Gan Wang\",\"doi\":\"10.3390/nano14161360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a promising cathode material, olivine-structured LiMnPO<sub>4</sub> holds enormous potential for lithium-ion batteries. Herein, we demonstrate a green biomass-derived phytic-acid-assisted method to synthesize a series of LiMn<sub>1-x</sub>Fe<sub>x</sub>PO<sub>4</sub>/C composites. The effect of Fe doping on the crystal structure and morphology of LiMnPO<sub>4</sub> particles is investigated. It is revealed that the optimal Fe doping amount of x = 0.2 enables a substantial enhancement of interfacial charge transfer ability and Li<sup>+</sup> ion diffusion kinetics. Consequently, a large reversible capacity output of 146 mAh g<sup>-1</sup> at 0.05 C and a high rate capacity of 77 mAh g<sup>-1</sup> at 2 C were acquired by the as-optimized LiMn<sub>0.8</sub>Fe<sub>0.2</sub>PO<sub>4</sub>/C cathode. Moreover, the LiMn<sub>0.8</sub>Fe<sub>0.2</sub>PO<sub>4</sub>/C delivered a specific capacity of 68 mAh g<sup>-1</sup> at 2 C after 500 cycles, with a capacity retention of 88.4%. This work will unveil a green synthesis route for advancing phosphate cathode materials toward practical implementation.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14161360\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161360","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种前景广阔的正极材料,橄榄石结构的 LiMnPO4 在锂离子电池领域具有巨大的潜力。在此,我们展示了一种绿色生物质衍生植酸辅助方法,用于合成一系列 LiMn1-xFexPO4/C 复合材料。研究了铁掺杂对 LiMnPO4 颗粒晶体结构和形态的影响。结果表明,在 x = 0.2 的最佳铁掺杂量下,界面电荷转移能力和 Li+ 离子扩散动力学均得到大幅提高。因此,优化后的 LiMn0.8Fe0.2PO4/C 阴极在 0.05 C 时的可逆容量输出高达 146 mAh g-1,在 2 C 时的速率容量高达 77 mAh g-1。此外,LiMn0.8Fe0.2PO4/C 在 2 C 条件下循环 500 次后,比容量为 68 mAh g-1,容量保持率为 88.4%。这项工作将揭示一条绿色合成路线,推动磷酸盐阴极材料走向实用化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Phytic Acid-Assisted Synthesis of LiMn1-xFexPO4/C Cathodes for High-Performance Lithium-Ion Batteries.

As a promising cathode material, olivine-structured LiMnPO4 holds enormous potential for lithium-ion batteries. Herein, we demonstrate a green biomass-derived phytic-acid-assisted method to synthesize a series of LiMn1-xFexPO4/C composites. The effect of Fe doping on the crystal structure and morphology of LiMnPO4 particles is investigated. It is revealed that the optimal Fe doping amount of x = 0.2 enables a substantial enhancement of interfacial charge transfer ability and Li+ ion diffusion kinetics. Consequently, a large reversible capacity output of 146 mAh g-1 at 0.05 C and a high rate capacity of 77 mAh g-1 at 2 C were acquired by the as-optimized LiMn0.8Fe0.2PO4/C cathode. Moreover, the LiMn0.8Fe0.2PO4/C delivered a specific capacity of 68 mAh g-1 at 2 C after 500 cycles, with a capacity retention of 88.4%. This work will unveil a green synthesis route for advancing phosphate cathode materials toward practical implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信