{"title":"基于优化填充率的工厂挥发性有机化合物脱水装置的设计与性能研究","authors":"Yali Yuan, Huasen Wang, Zhihong Sun, Chao Yu","doi":"10.3390/mps7040059","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the development and optimization of a water removal device for biogenic volatile organic compounds (BVOCs) from plant emissions. BVOCs play a crucial role in various ecological processes and have potential therapeutic effects on human health. However, it is challenging to accurately detect and analyze BVOCs due to their very low concentrations and interference by water vapor. This study systematically evaluates different filler materials and ratios to alleviate water vapor interference while maintaining BVOCs' integrity. The experimental results demonstrate that the combination of MgSO<sub>4</sub> + Na<sub>2</sub>SO<sub>4</sub> mixed filling and CuSO<sub>4</sub> layered filling in a 3:3:1 ratio can effectively improve the collection efficiency and detection accuracy of BVOCs. Meanwhile, the effectiveness of the device in improving the detection of volatile compounds in plant samples is also confirmed by the VOC verification experiments on <i>Michelia maudiae</i> and <i>Cinnamomum camphora</i> tree species after mechanical damage. The experimental results show that the device is effective in improving the detection of volatile compounds in plant samples. The findings provide a powerful technical means for exploring the role of BVOCs in environmental monitoring and scientific research.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357541/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research on the Design and Performance of Plant Volatile Organic Compounds Water Removal Device Based on Optimized Filler Ratio.\",\"authors\":\"Yali Yuan, Huasen Wang, Zhihong Sun, Chao Yu\",\"doi\":\"10.3390/mps7040059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the development and optimization of a water removal device for biogenic volatile organic compounds (BVOCs) from plant emissions. BVOCs play a crucial role in various ecological processes and have potential therapeutic effects on human health. However, it is challenging to accurately detect and analyze BVOCs due to their very low concentrations and interference by water vapor. This study systematically evaluates different filler materials and ratios to alleviate water vapor interference while maintaining BVOCs' integrity. The experimental results demonstrate that the combination of MgSO<sub>4</sub> + Na<sub>2</sub>SO<sub>4</sub> mixed filling and CuSO<sub>4</sub> layered filling in a 3:3:1 ratio can effectively improve the collection efficiency and detection accuracy of BVOCs. Meanwhile, the effectiveness of the device in improving the detection of volatile compounds in plant samples is also confirmed by the VOC verification experiments on <i>Michelia maudiae</i> and <i>Cinnamomum camphora</i> tree species after mechanical damage. The experimental results show that the device is effective in improving the detection of volatile compounds in plant samples. The findings provide a powerful technical means for exploring the role of BVOCs in environmental monitoring and scientific research.</p>\",\"PeriodicalId\":18715,\"journal\":{\"name\":\"Methods and Protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357541/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps7040059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7040059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Research on the Design and Performance of Plant Volatile Organic Compounds Water Removal Device Based on Optimized Filler Ratio.
This study focuses on the development and optimization of a water removal device for biogenic volatile organic compounds (BVOCs) from plant emissions. BVOCs play a crucial role in various ecological processes and have potential therapeutic effects on human health. However, it is challenging to accurately detect and analyze BVOCs due to their very low concentrations and interference by water vapor. This study systematically evaluates different filler materials and ratios to alleviate water vapor interference while maintaining BVOCs' integrity. The experimental results demonstrate that the combination of MgSO4 + Na2SO4 mixed filling and CuSO4 layered filling in a 3:3:1 ratio can effectively improve the collection efficiency and detection accuracy of BVOCs. Meanwhile, the effectiveness of the device in improving the detection of volatile compounds in plant samples is also confirmed by the VOC verification experiments on Michelia maudiae and Cinnamomum camphora tree species after mechanical damage. The experimental results show that the device is effective in improving the detection of volatile compounds in plant samples. The findings provide a powerful technical means for exploring the role of BVOCs in environmental monitoring and scientific research.