{"title":"通过第一性原理计算研究 TiMoNbX(X=Cr、Ta、Cr 和 Ta)难熔高熵合金的相稳定性、弹性和热力学特性。","authors":"Yueyi Wang, Hongxi Liu, Xuanhong Hao, Chen Yang, Yaxia Liu, Lin Chen, Xiaowei Zhang","doi":"10.1088/1361-648X/ad7437","DOIUrl":null,"url":null,"abstract":"<p><p>This work uses first-principles calculations to investigate the phase stability, thermophysical and mechanical properties of refractory high entropy alloys (RHEAs) at finite temperatures. On the basis of plane wave quasi-potential and density functional theory, construct the structure model of a solid solution. The TiMoNbX (X = Cr, Ta, Cr and Ta) RHEAs have been determined to preserve a single body-centered cubic solid solution structure by calculations and the equilibrium lattice parameters and elastic modulus are consistent with experimental data obtained by laser cladding, which is combined with TC4 (Ti-6Al-4V) substrate. Using the quasi-harmonic Debye-Grüneisen model, the thermophysical characteristics of three RHEAs are investigated. The Voigt-Reuss-Hill scheme is used for calculating the Young's modulus (<i>E</i>), bulk modulus (<i>B</i>), shear modulus (<i>G</i>), and Poisson's ratio (<i>ν</i>), which indicates that all three RHEAs are ductile materials. Additionally, the modulus and hardness of materials decrease as temperature rises, whereas the properties of TiMoNbX RHEAs are predicted, as the nanoindentation hardness values at room temperature are comparable to, and slightly higher than the calculated values.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles calculations to investigate phase stability, elastic and thermodynamic properties of TiMoNbX (X=Cr, Ta, Cr and Ta) refractory high entropy alloys.\",\"authors\":\"Yueyi Wang, Hongxi Liu, Xuanhong Hao, Chen Yang, Yaxia Liu, Lin Chen, Xiaowei Zhang\",\"doi\":\"10.1088/1361-648X/ad7437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work uses first-principles calculations to investigate the phase stability, thermophysical and mechanical properties of refractory high entropy alloys (RHEAs) at finite temperatures. On the basis of plane wave quasi-potential and density functional theory, construct the structure model of a solid solution. The TiMoNbX (X = Cr, Ta, Cr and Ta) RHEAs have been determined to preserve a single body-centered cubic solid solution structure by calculations and the equilibrium lattice parameters and elastic modulus are consistent with experimental data obtained by laser cladding, which is combined with TC4 (Ti-6Al-4V) substrate. Using the quasi-harmonic Debye-Grüneisen model, the thermophysical characteristics of three RHEAs are investigated. The Voigt-Reuss-Hill scheme is used for calculating the Young's modulus (<i>E</i>), bulk modulus (<i>B</i>), shear modulus (<i>G</i>), and Poisson's ratio (<i>ν</i>), which indicates that all three RHEAs are ductile materials. Additionally, the modulus and hardness of materials decrease as temperature rises, whereas the properties of TiMoNbX RHEAs are predicted, as the nanoindentation hardness values at room temperature are comparable to, and slightly higher than the calculated values.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7437\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7437","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
First-principles calculations to investigate phase stability, elastic and thermodynamic properties of TiMoNbX (X=Cr, Ta, Cr and Ta) refractory high entropy alloys.
This work uses first-principles calculations to investigate the phase stability, thermophysical and mechanical properties of refractory high entropy alloys (RHEAs) at finite temperatures. On the basis of plane wave quasi-potential and density functional theory, construct the structure model of a solid solution. The TiMoNbX (X = Cr, Ta, Cr and Ta) RHEAs have been determined to preserve a single body-centered cubic solid solution structure by calculations and the equilibrium lattice parameters and elastic modulus are consistent with experimental data obtained by laser cladding, which is combined with TC4 (Ti-6Al-4V) substrate. Using the quasi-harmonic Debye-Grüneisen model, the thermophysical characteristics of three RHEAs are investigated. The Voigt-Reuss-Hill scheme is used for calculating the Young's modulus (E), bulk modulus (B), shear modulus (G), and Poisson's ratio (ν), which indicates that all three RHEAs are ductile materials. Additionally, the modulus and hardness of materials decrease as temperature rises, whereas the properties of TiMoNbX RHEAs are predicted, as the nanoindentation hardness values at room temperature are comparable to, and slightly higher than the calculated values.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.