Sandeep Kumar, Surender Pratap, Ravi Trivedi, Brahmananda Chakraborty
{"title":"应变和本征自旋轨道耦合对氮化镓带隙工程的联合效应:第一原理研究。","authors":"Sandeep Kumar, Surender Pratap, Ravi Trivedi, Brahmananda Chakraborty","doi":"10.1088/1361-648X/ad743b","DOIUrl":null,"url":null,"abstract":"<p><p>By employing first-principles calculations, we theoretically investigate the impact of uniaxial strain and intrinsic spin-orbit coupling (SOC) on the electronic properties of zigzag and armchair edge hydrogen (H)-passivated graphene nanoribbons (GNRs). We find that band structure and density of states of 4-zigzag graphene nanoribbon (ZGNR) and 15-armchair graphene nanoribbon (AGNR) are highly sensitive to the combined effect of strain and intrinsic SOC. In the case of H-passivated 4-ZGNR, SOC with a strain>10% increases the energy band by increasing spin-polarized states at the opposite edges. In contrast to 4-ZGNR, the oscillatory behavior of band gap of H-passivated 15-AGNR is preserved in the presence of strain and SOC. Moreover, for both types of GNRs (zigzag and armchair), the presence of strain and intrinsic SOC preserve spin symmetry.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect of strain and intrinsic spin-orbit coupling on band gap engineering of GNRs: a first-principles study.\",\"authors\":\"Sandeep Kumar, Surender Pratap, Ravi Trivedi, Brahmananda Chakraborty\",\"doi\":\"10.1088/1361-648X/ad743b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By employing first-principles calculations, we theoretically investigate the impact of uniaxial strain and intrinsic spin-orbit coupling (SOC) on the electronic properties of zigzag and armchair edge hydrogen (H)-passivated graphene nanoribbons (GNRs). We find that band structure and density of states of 4-zigzag graphene nanoribbon (ZGNR) and 15-armchair graphene nanoribbon (AGNR) are highly sensitive to the combined effect of strain and intrinsic SOC. In the case of H-passivated 4-ZGNR, SOC with a strain>10% increases the energy band by increasing spin-polarized states at the opposite edges. In contrast to 4-ZGNR, the oscillatory behavior of band gap of H-passivated 15-AGNR is preserved in the presence of strain and SOC. Moreover, for both types of GNRs (zigzag and armchair), the presence of strain and intrinsic SOC preserve spin symmetry.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad743b\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad743b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Combined effect of strain and intrinsic spin-orbit coupling on band gap engineering of GNRs: a first-principles study.
By employing first-principles calculations, we theoretically investigate the impact of uniaxial strain and intrinsic spin-orbit coupling (SOC) on the electronic properties of zigzag and armchair edge hydrogen (H)-passivated graphene nanoribbons (GNRs). We find that band structure and density of states of 4-zigzag graphene nanoribbon (ZGNR) and 15-armchair graphene nanoribbon (AGNR) are highly sensitive to the combined effect of strain and intrinsic SOC. In the case of H-passivated 4-ZGNR, SOC with a strain>10% increases the energy band by increasing spin-polarized states at the opposite edges. In contrast to 4-ZGNR, the oscillatory behavior of band gap of H-passivated 15-AGNR is preserved in the presence of strain and SOC. Moreover, for both types of GNRs (zigzag and armchair), the presence of strain and intrinsic SOC preserve spin symmetry.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.