应变和本征自旋轨道耦合对氮化镓带隙工程的联合效应:第一原理研究。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Sandeep Kumar, Surender Pratap, Ravi Trivedi, Brahmananda Chakraborty
{"title":"应变和本征自旋轨道耦合对氮化镓带隙工程的联合效应:第一原理研究。","authors":"Sandeep Kumar, Surender Pratap, Ravi Trivedi, Brahmananda Chakraborty","doi":"10.1088/1361-648X/ad743b","DOIUrl":null,"url":null,"abstract":"<p><p>By employing first-principles calculations, we theoretically investigate the impact of uniaxial strain and intrinsic spin-orbit coupling (SOC) on the electronic properties of zigzag and armchair edge hydrogen (H)-passivated graphene nanoribbons (GNRs). We find that band structure and density of states of 4-zigzag graphene nanoribbon (ZGNR) and 15-armchair graphene nanoribbon (AGNR) are highly sensitive to the combined effect of strain and intrinsic SOC. In the case of H-passivated 4-ZGNR, SOC with a strain>10% increases the energy band by increasing spin-polarized states at the opposite edges. In contrast to 4-ZGNR, the oscillatory behavior of band gap of H-passivated 15-AGNR is preserved in the presence of strain and SOC. Moreover, for both types of GNRs (zigzag and armchair), the presence of strain and intrinsic SOC preserve spin symmetry.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect of strain and intrinsic spin-orbit coupling on band gap engineering of GNRs: a first-principles study.\",\"authors\":\"Sandeep Kumar, Surender Pratap, Ravi Trivedi, Brahmananda Chakraborty\",\"doi\":\"10.1088/1361-648X/ad743b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By employing first-principles calculations, we theoretically investigate the impact of uniaxial strain and intrinsic spin-orbit coupling (SOC) on the electronic properties of zigzag and armchair edge hydrogen (H)-passivated graphene nanoribbons (GNRs). We find that band structure and density of states of 4-zigzag graphene nanoribbon (ZGNR) and 15-armchair graphene nanoribbon (AGNR) are highly sensitive to the combined effect of strain and intrinsic SOC. In the case of H-passivated 4-ZGNR, SOC with a strain>10% increases the energy band by increasing spin-polarized states at the opposite edges. In contrast to 4-ZGNR, the oscillatory behavior of band gap of H-passivated 15-AGNR is preserved in the presence of strain and SOC. Moreover, for both types of GNRs (zigzag and armchair), the presence of strain and intrinsic SOC preserve spin symmetry.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad743b\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad743b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

y 利用第一性原理计算,我们从理论上研究了单轴应变 和本征自旋轨道耦合(SOC)对人字边和扶手边氢(H)端石墨烯纳米带(GNRs)电子特性的影响。我们发现,4-人字形石墨烯纳米带(ZGNR)和15-臂章石墨烯纳米带(AGNR)的带结构和状态密度(DOS)对应变和固有 SOC 的共同作用非常敏感。对于以 H 结尾的 4-ZGNR 来说,应变大于 10% 的 SOC 会通过增加对边的自旋极化态来增加能带。与 4-ZGNR 相反,H 端接的 15-AGNR 的能带间隙的振荡行为在应变和 SOC 的作用下得以保留。此外,对于两种类型的 GNR(之字形和扶手椅形),应变和固有 SOC 的存在都能保持自旋对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined effect of strain and intrinsic spin-orbit coupling on band gap engineering of GNRs: a first-principles study.

By employing first-principles calculations, we theoretically investigate the impact of uniaxial strain and intrinsic spin-orbit coupling (SOC) on the electronic properties of zigzag and armchair edge hydrogen (H)-passivated graphene nanoribbons (GNRs). We find that band structure and density of states of 4-zigzag graphene nanoribbon (ZGNR) and 15-armchair graphene nanoribbon (AGNR) are highly sensitive to the combined effect of strain and intrinsic SOC. In the case of H-passivated 4-ZGNR, SOC with a strain>10% increases the energy band by increasing spin-polarized states at the opposite edges. In contrast to 4-ZGNR, the oscillatory behavior of band gap of H-passivated 15-AGNR is preserved in the presence of strain and SOC. Moreover, for both types of GNRs (zigzag and armchair), the presence of strain and intrinsic SOC preserve spin symmetry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信