Kateryna Nechyporenko, Margaritis Voliotis, Xiao Feng Li, Owen Hollings, Deyana Ivanova, Jamie J Walker, Kevin T O'Byrne, Krasimira Tsaneva-Atanasova
{"title":"后背杏仁核的神经元网络动态:生殖激素脉动的形成。","authors":"Kateryna Nechyporenko, Margaritis Voliotis, Xiao Feng Li, Owen Hollings, Deyana Ivanova, Jamie J Walker, Kevin T O'Byrne, Krasimira Tsaneva-Atanasova","doi":"10.1098/rsif.2024.0143","DOIUrl":null,"url":null,"abstract":"<p><p>Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown. Here, we employ <i>in silico</i> modelling in order to explore the impact of dynamic inputs on GnRH pulse generator activity. We introduce and analyse a mathematical model representing MePD neuronal circuits composed of GABAergic and glutamatergic neuronal populations, integrating it with our GnRH pulse generator model. Our analysis dissects the influence of excitatory and inhibitory MePD projections' outputs on the GnRH pulse generator's activity and reveals a functionally relevant MePD glutamatergic projection to the GnRH pulse generator, which we probe with <i>in vivo</i> optogenetics. Our study sheds light on how MePD neuronal dynamics affect the GnRH pulse generator activity and offers insights into stress-related dysregulation.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 217","pages":"20240143"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350435/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuronal network dynamics in the posterodorsal amygdala: shaping reproductive hormone pulsatility.\",\"authors\":\"Kateryna Nechyporenko, Margaritis Voliotis, Xiao Feng Li, Owen Hollings, Deyana Ivanova, Jamie J Walker, Kevin T O'Byrne, Krasimira Tsaneva-Atanasova\",\"doi\":\"10.1098/rsif.2024.0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown. Here, we employ <i>in silico</i> modelling in order to explore the impact of dynamic inputs on GnRH pulse generator activity. We introduce and analyse a mathematical model representing MePD neuronal circuits composed of GABAergic and glutamatergic neuronal populations, integrating it with our GnRH pulse generator model. Our analysis dissects the influence of excitatory and inhibitory MePD projections' outputs on the GnRH pulse generator's activity and reveals a functionally relevant MePD glutamatergic projection to the GnRH pulse generator, which we probe with <i>in vivo</i> optogenetics. Our study sheds light on how MePD neuronal dynamics affect the GnRH pulse generator activity and offers insights into stress-related dysregulation.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 217\",\"pages\":\"20240143\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350435/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0143\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0143","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Neuronal network dynamics in the posterodorsal amygdala: shaping reproductive hormone pulsatility.
Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown. Here, we employ in silico modelling in order to explore the impact of dynamic inputs on GnRH pulse generator activity. We introduce and analyse a mathematical model representing MePD neuronal circuits composed of GABAergic and glutamatergic neuronal populations, integrating it with our GnRH pulse generator model. Our analysis dissects the influence of excitatory and inhibitory MePD projections' outputs on the GnRH pulse generator's activity and reveals a functionally relevant MePD glutamatergic projection to the GnRH pulse generator, which we probe with in vivo optogenetics. Our study sheds light on how MePD neuronal dynamics affect the GnRH pulse generator activity and offers insights into stress-related dysregulation.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.