以锈菌孢子为食的五倍子蠓(双翅目:Cecidomyiidae)的系统发育、生物地理学和寄主范围(担子菌纲:Pucciniales)。

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY
Paula Andrea Gómez-Zapata, Melissa A Johnson, Teresa Bonacci, M Catherine Aime
{"title":"以锈菌孢子为食的五倍子蠓(双翅目:Cecidomyiidae)的系统发育、生物地理学和寄主范围(担子菌纲:Pucciniales)。","authors":"Paula Andrea Gómez-Zapata, Melissa A Johnson, Teresa Bonacci, M Catherine Aime","doi":"10.1093/jisesa/ieae077","DOIUrl":null,"url":null,"abstract":"<p><p>Rust fungi (Pucciniales) are plant pathogens that can cause devastating yield losses to economically important crops and threaten native plants with extinction. Rusts are usually controlled with fungicides when rust-resistant plant varieties are unavailable. However, natural enemies may offer an alternative to chemicals by acting as biological controls. The larvae of Mycodiplosis Rübsaamen (49 spp.) feed on the spores of rusts and powdery mildew fungi and have been suggested as a potential biocontrol candidate for disease-causing rusts. However, little is known about the phylogenetic relationships, biogeography, and host range of this genus. We screened 5,665 rust specimens from fungarium specimens and field collections and recovered a total of 363 larvae on 315 rust specimens from 17 countries. Three mitochondrial and 2 nuclear loci were amplified and sequenced for the phylogenetic reconstruction of 129 individuals. We recovered 12 clades, of which 12 and 10 were supported with maximum likelihood and Bayesian inference, respectively. Of the 12 clades, 7 comprised species from multiple continents and climatic regions, and 5 comprised species from a single region. Individuals forming clades were collected from 2 to 18 rust species, suggesting that Mycodiplosis species have a broad host range. In total, Mycodiplosis larvae were identified on 44 different rust species collected from 18 plant families. Future studies should focus on expanding field sampling efforts, including data from additional gene regions, and incorporating morphological data to further elucidate species diversity and distribution patterns.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogeny, biogeography, and host range of gall midges (Diptera: Cecidomyiidae) feeding on spores of rust fungi (Basidiomycota: Pucciniales).\",\"authors\":\"Paula Andrea Gómez-Zapata, Melissa A Johnson, Teresa Bonacci, M Catherine Aime\",\"doi\":\"10.1093/jisesa/ieae077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rust fungi (Pucciniales) are plant pathogens that can cause devastating yield losses to economically important crops and threaten native plants with extinction. Rusts are usually controlled with fungicides when rust-resistant plant varieties are unavailable. However, natural enemies may offer an alternative to chemicals by acting as biological controls. The larvae of Mycodiplosis Rübsaamen (49 spp.) feed on the spores of rusts and powdery mildew fungi and have been suggested as a potential biocontrol candidate for disease-causing rusts. However, little is known about the phylogenetic relationships, biogeography, and host range of this genus. We screened 5,665 rust specimens from fungarium specimens and field collections and recovered a total of 363 larvae on 315 rust specimens from 17 countries. Three mitochondrial and 2 nuclear loci were amplified and sequenced for the phylogenetic reconstruction of 129 individuals. We recovered 12 clades, of which 12 and 10 were supported with maximum likelihood and Bayesian inference, respectively. Of the 12 clades, 7 comprised species from multiple continents and climatic regions, and 5 comprised species from a single region. Individuals forming clades were collected from 2 to 18 rust species, suggesting that Mycodiplosis species have a broad host range. In total, Mycodiplosis larvae were identified on 44 different rust species collected from 18 plant families. Future studies should focus on expanding field sampling efforts, including data from additional gene regions, and incorporating morphological data to further elucidate species diversity and distribution patterns.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieae077\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae077","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

锈菌(Pucciniales)是一种植物病原体,可对具有重要经济价值的作物造成毁灭性的产量损失,并威胁到本地植物的灭绝。如果没有抗锈病的植物品种,通常使用杀菌剂来控制锈病。不过,天敌可以作为生物防治手段提供化学药剂的替代品。锈病菌(Mycodiplosis Rübsaamen,49 种)的幼虫以锈菌和白粉病菌的孢子为食,被认为是潜在的生物防治致病锈病的候选对象。然而,人们对该属的系统发育关系、生物地理学和寄主范围知之甚少。我们从菌种标本和田间采集的 5,665 份锈病标本中进行了筛选,在来自 17 个国家的 315 份锈病标本上共发现了 363 只幼虫。对 129 个个体的 3 个线粒体位点和 2 个核位点进行了扩增和测序,以重建其系统发育。我们发现了 12 个支系,其中 12 个支系和 10 个支系分别得到了最大似然法和贝叶斯推断法的支持。在这 12 个支系中,7 个支系由来自多个大陆和气候区的物种组成,5 个支系由来自单一地区的物种组成。形成支系的个体是从 2 到 18 个锈病物种中收集的,这表明霉菌疫霉菌的寄主范围很广。从 18 个植物科中收集的 44 种不同的锈病种类上共鉴定出了霉形体幼虫。未来的研究应侧重于扩大田间采样工作,包括来自更多基因区域的数据,并纳入形态学数据,以进一步阐明物种多样性和分布模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogeny, biogeography, and host range of gall midges (Diptera: Cecidomyiidae) feeding on spores of rust fungi (Basidiomycota: Pucciniales).

Rust fungi (Pucciniales) are plant pathogens that can cause devastating yield losses to economically important crops and threaten native plants with extinction. Rusts are usually controlled with fungicides when rust-resistant plant varieties are unavailable. However, natural enemies may offer an alternative to chemicals by acting as biological controls. The larvae of Mycodiplosis Rübsaamen (49 spp.) feed on the spores of rusts and powdery mildew fungi and have been suggested as a potential biocontrol candidate for disease-causing rusts. However, little is known about the phylogenetic relationships, biogeography, and host range of this genus. We screened 5,665 rust specimens from fungarium specimens and field collections and recovered a total of 363 larvae on 315 rust specimens from 17 countries. Three mitochondrial and 2 nuclear loci were amplified and sequenced for the phylogenetic reconstruction of 129 individuals. We recovered 12 clades, of which 12 and 10 were supported with maximum likelihood and Bayesian inference, respectively. Of the 12 clades, 7 comprised species from multiple continents and climatic regions, and 5 comprised species from a single region. Individuals forming clades were collected from 2 to 18 rust species, suggesting that Mycodiplosis species have a broad host range. In total, Mycodiplosis larvae were identified on 44 different rust species collected from 18 plant families. Future studies should focus on expanding field sampling efforts, including data from additional gene regions, and incorporating morphological data to further elucidate species diversity and distribution patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信