墨鱼骨衍生磷酸钙生物陶瓷具有更强的成骨特性

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Boqi Pang, Jiaru Xian, Jiajun Chen, Liqi Ng, Mengting Li, Guangchun Zhao, Yixun E, Xiaorui Wang, Xiaxin Cao, Changze Zhang, Mingjing Zhang, Chaozong Liu
{"title":"墨鱼骨衍生磷酸钙生物陶瓷具有更强的成骨特性","authors":"Boqi Pang, Jiaru Xian, Jiajun Chen, Liqi Ng, Mengting Li, Guangchun Zhao, Yixun E, Xiaorui Wang, Xiaxin Cao, Changze Zhang, Mingjing Zhang, Chaozong Liu","doi":"10.3390/jfb15080212","DOIUrl":null,"url":null,"abstract":"<p><p>Cuttlefish bones are byproducts of cuttlefish processing and are readily available in the marine food industry. In this study, calcium phosphate bioceramics were prepared from cuttlefish bones using a two-stage hydrothermal calcination process. The results indicated that all bioceramics derived from cuttlefish bones had a higher degradation capacity, better bone-like apatite formation ability, and higher degree of osteogenic differentiation than commercially available hydroxyapatite. Notably, β-tricalcium phosphate, which had the highest degree of Ca<sup>2+</sup> and Sr<sup>2+</sup> dissolution among the bioceramics extracted, can significantly upregulate osteogenic markers (alkaline phosphatase, osteocalcin) and stimulate bone matrix mineralization. Thus, it is a promising bioceramic material for applications in bone regeneration.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties.\",\"authors\":\"Boqi Pang, Jiaru Xian, Jiajun Chen, Liqi Ng, Mengting Li, Guangchun Zhao, Yixun E, Xiaorui Wang, Xiaxin Cao, Changze Zhang, Mingjing Zhang, Chaozong Liu\",\"doi\":\"10.3390/jfb15080212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuttlefish bones are byproducts of cuttlefish processing and are readily available in the marine food industry. In this study, calcium phosphate bioceramics were prepared from cuttlefish bones using a two-stage hydrothermal calcination process. The results indicated that all bioceramics derived from cuttlefish bones had a higher degradation capacity, better bone-like apatite formation ability, and higher degree of osteogenic differentiation than commercially available hydroxyapatite. Notably, β-tricalcium phosphate, which had the highest degree of Ca<sup>2+</sup> and Sr<sup>2+</sup> dissolution among the bioceramics extracted, can significantly upregulate osteogenic markers (alkaline phosphatase, osteocalcin) and stimulate bone matrix mineralization. Thus, it is a promising bioceramic material for applications in bone regeneration.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15080212\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15080212","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

墨鱼骨是墨鱼加工的副产品,在海洋食品工业中很容易获得。本研究采用两阶段水热煅烧工艺,从墨鱼骨中制备了磷酸钙生物陶瓷。结果表明,与市售羟基磷灰石相比,所有从墨鱼骨中提取的生物陶瓷都具有更高的降解能力、更好的类骨磷灰石形成能力和更高的成骨分化程度。值得注意的是,在提取的生物陶瓷中,β-磷酸三钙对 Ca2+ 和 Sr2+ 的溶解度最高,能显著上调成骨标志物(碱性磷酸酶、骨钙素)并刺激骨基质矿化。因此,它是一种有望应用于骨再生的生物陶瓷材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties.

Cuttlefish bones are byproducts of cuttlefish processing and are readily available in the marine food industry. In this study, calcium phosphate bioceramics were prepared from cuttlefish bones using a two-stage hydrothermal calcination process. The results indicated that all bioceramics derived from cuttlefish bones had a higher degradation capacity, better bone-like apatite formation ability, and higher degree of osteogenic differentiation than commercially available hydroxyapatite. Notably, β-tricalcium phosphate, which had the highest degree of Ca2+ and Sr2+ dissolution among the bioceramics extracted, can significantly upregulate osteogenic markers (alkaline phosphatase, osteocalcin) and stimulate bone matrix mineralization. Thus, it is a promising bioceramic material for applications in bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信