Othman Fallatah, M T Qutub, Emad F Alsulimani, Omar H Alshehri, Loai M Hafiz, Alaa A Altamrawi, Mahmoud R Khattab
{"title":"高本底辐射地区的土壤和植物对铀和钍同位素的吸附率。","authors":"Othman Fallatah, M T Qutub, Emad F Alsulimani, Omar H Alshehri, Loai M Hafiz, Alaa A Altamrawi, Mahmoud R Khattab","doi":"10.1080/10256016.2024.2382167","DOIUrl":null,"url":null,"abstract":"<p><p>An important method for measuring radionuclide activity is alpha spectrometry. Ten soil samples were collected from the studied area. The activity concentrations of <sup>238</sup>U and <sup>234</sup>U in the collected soil samples ranged between 135 and 218 Bq kg<sup>-1</sup> and between 117 and 183 Bq kg<sup>-1</sup>, respectively. <sup>232</sup>Th, <sup>230</sup>Th and <sup>228</sup>Th activity concentrations ranged between 101 and 339, between 122 and 234 and between 106 and 385 Bq kg<sup>-1</sup>, respectively. When calculating the amount of radionuclide transport across the food chain, assessment models usually employ a transfer factor. Through root uptake, U and Th are transferred from the soil to food plants. To monitor the movement of radionuclides from the uranium series in diverse environments, it may be possible to use the ratios of uranium and thorium isotopes. Uranium mobility in soil depends on different physicochemical, organic and enzymatic factors and mechanisms. The high mobility of uranium is the main reason for the accumulation of uranium in the soil at root level and the possibility of its transfer to plants. A group of plants were selected that are grown in this area and the population relies on them mainly to meet their food needs. The concentration and transfer factor values of uranium isotopes were the highest in roots as compared with leaves and stems. Uranium in plants accumulates in roots and is then transferred to leaves. The mobility of uranium in plant tissues is constrained because it frequently adsorbs cell wall components. As a result, concentrations are frequently higher in tissues located in lower parts of the plant, with root surfaces having the highest concentrations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption rate of uranium and thorium isotopes in soil and plants grown in a high background radiation area.\",\"authors\":\"Othman Fallatah, M T Qutub, Emad F Alsulimani, Omar H Alshehri, Loai M Hafiz, Alaa A Altamrawi, Mahmoud R Khattab\",\"doi\":\"10.1080/10256016.2024.2382167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important method for measuring radionuclide activity is alpha spectrometry. Ten soil samples were collected from the studied area. The activity concentrations of <sup>238</sup>U and <sup>234</sup>U in the collected soil samples ranged between 135 and 218 Bq kg<sup>-1</sup> and between 117 and 183 Bq kg<sup>-1</sup>, respectively. <sup>232</sup>Th, <sup>230</sup>Th and <sup>228</sup>Th activity concentrations ranged between 101 and 339, between 122 and 234 and between 106 and 385 Bq kg<sup>-1</sup>, respectively. When calculating the amount of radionuclide transport across the food chain, assessment models usually employ a transfer factor. Through root uptake, U and Th are transferred from the soil to food plants. To monitor the movement of radionuclides from the uranium series in diverse environments, it may be possible to use the ratios of uranium and thorium isotopes. Uranium mobility in soil depends on different physicochemical, organic and enzymatic factors and mechanisms. The high mobility of uranium is the main reason for the accumulation of uranium in the soil at root level and the possibility of its transfer to plants. A group of plants were selected that are grown in this area and the population relies on them mainly to meet their food needs. The concentration and transfer factor values of uranium isotopes were the highest in roots as compared with leaves and stems. Uranium in plants accumulates in roots and is then transferred to leaves. The mobility of uranium in plant tissues is constrained because it frequently adsorbs cell wall components. As a result, concentrations are frequently higher in tissues located in lower parts of the plant, with root surfaces having the highest concentrations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10256016.2024.2382167\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2024.2382167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorption rate of uranium and thorium isotopes in soil and plants grown in a high background radiation area.
An important method for measuring radionuclide activity is alpha spectrometry. Ten soil samples were collected from the studied area. The activity concentrations of 238U and 234U in the collected soil samples ranged between 135 and 218 Bq kg-1 and between 117 and 183 Bq kg-1, respectively. 232Th, 230Th and 228Th activity concentrations ranged between 101 and 339, between 122 and 234 and between 106 and 385 Bq kg-1, respectively. When calculating the amount of radionuclide transport across the food chain, assessment models usually employ a transfer factor. Through root uptake, U and Th are transferred from the soil to food plants. To monitor the movement of radionuclides from the uranium series in diverse environments, it may be possible to use the ratios of uranium and thorium isotopes. Uranium mobility in soil depends on different physicochemical, organic and enzymatic factors and mechanisms. The high mobility of uranium is the main reason for the accumulation of uranium in the soil at root level and the possibility of its transfer to plants. A group of plants were selected that are grown in this area and the population relies on them mainly to meet their food needs. The concentration and transfer factor values of uranium isotopes were the highest in roots as compared with leaves and stems. Uranium in plants accumulates in roots and is then transferred to leaves. The mobility of uranium in plant tissues is constrained because it frequently adsorbs cell wall components. As a result, concentrations are frequently higher in tissues located in lower parts of the plant, with root surfaces having the highest concentrations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.