Lirong Zhang, Shaocong Zhao, Zhongbing Yang, Hua Zheng, Mingxing Lei
{"title":"从人口统计学、饮食习惯、生活方式和运动习惯等方面评估大学生严重心理困扰风险的人工智能工具:一项利用机器学习进行外部验证的研究。","authors":"Lirong Zhang, Shaocong Zhao, Zhongbing Yang, Hua Zheng, Mingxing Lei","doi":"10.1186/s12888-024-06017-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precisely estimating the probability of mental health challenges among college students is pivotal for facilitating timely intervention and preventative measures. However, to date, no specific artificial intelligence (AI) models have been reported to effectively forecast severe mental distress. This study aimed to develop and validate an advanced AI tool for predicting the likelihood of severe mental distress in college students.</p><p><strong>Methods: </strong>A total of 2088 college students from five universities were enrolled in this study. Participants were randomly divided into a training group (80%) and a validation group (20%). Various machine learning models, including logistic regression (LR), extreme gradient boosting machine (eXGBM), decision tree (DT), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were employed and trained in this study. Model performance was evaluated using 11 metrics, and the highest scoring model was selected. In addition, external validation was conducted on 751 participants from three universities. The AI tool was then deployed as a web-based AI application.</p><p><strong>Results: </strong>Among the models developed, the eXGBM model achieved the highest area under the curve (AUC) value of 0.932 (95% CI: 0.911-0.949), closely followed by RF with an AUC of 0.927 (95% CI: 0.905-0.943). The eXGBM model demonstrated superior performance in accuracy (0.850), precision (0.824), recall (0.890), specificity (0.810), F1 score (0.856), Brier score (0.103), log loss (0.326), and discrimination slope (0.598). The eXGBM model also received the highest score of 60 based on the evaluation scoring system, while RF achieved a score of 49. The scores of LR, DT, and SVM were only 19, 32, and 36, respectively. External validation yielded an impressive AUC value of 0.918.</p><p><strong>Conclusions: </strong>The AI tool demonstrates promising predictive performance for identifying college students at risk of severe mental distress. It has the potential to guide intervention strategies and support early identification and preventive measures.</p>","PeriodicalId":9029,"journal":{"name":"BMC Psychiatry","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348771/pdf/","citationCount":"0","resultStr":"{\"title\":\"An artificial intelligence tool to assess the risk of severe mental distress among college students in terms of demographics, eating habits, lifestyles, and sport habits: an externally validated study using machine learning.\",\"authors\":\"Lirong Zhang, Shaocong Zhao, Zhongbing Yang, Hua Zheng, Mingxing Lei\",\"doi\":\"10.1186/s12888-024-06017-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Precisely estimating the probability of mental health challenges among college students is pivotal for facilitating timely intervention and preventative measures. However, to date, no specific artificial intelligence (AI) models have been reported to effectively forecast severe mental distress. This study aimed to develop and validate an advanced AI tool for predicting the likelihood of severe mental distress in college students.</p><p><strong>Methods: </strong>A total of 2088 college students from five universities were enrolled in this study. Participants were randomly divided into a training group (80%) and a validation group (20%). Various machine learning models, including logistic regression (LR), extreme gradient boosting machine (eXGBM), decision tree (DT), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were employed and trained in this study. Model performance was evaluated using 11 metrics, and the highest scoring model was selected. In addition, external validation was conducted on 751 participants from three universities. The AI tool was then deployed as a web-based AI application.</p><p><strong>Results: </strong>Among the models developed, the eXGBM model achieved the highest area under the curve (AUC) value of 0.932 (95% CI: 0.911-0.949), closely followed by RF with an AUC of 0.927 (95% CI: 0.905-0.943). The eXGBM model demonstrated superior performance in accuracy (0.850), precision (0.824), recall (0.890), specificity (0.810), F1 score (0.856), Brier score (0.103), log loss (0.326), and discrimination slope (0.598). The eXGBM model also received the highest score of 60 based on the evaluation scoring system, while RF achieved a score of 49. The scores of LR, DT, and SVM were only 19, 32, and 36, respectively. External validation yielded an impressive AUC value of 0.918.</p><p><strong>Conclusions: </strong>The AI tool demonstrates promising predictive performance for identifying college students at risk of severe mental distress. It has the potential to guide intervention strategies and support early identification and preventive measures.</p>\",\"PeriodicalId\":9029,\"journal\":{\"name\":\"BMC Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12888-024-06017-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12888-024-06017-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
An artificial intelligence tool to assess the risk of severe mental distress among college students in terms of demographics, eating habits, lifestyles, and sport habits: an externally validated study using machine learning.
Background: Precisely estimating the probability of mental health challenges among college students is pivotal for facilitating timely intervention and preventative measures. However, to date, no specific artificial intelligence (AI) models have been reported to effectively forecast severe mental distress. This study aimed to develop and validate an advanced AI tool for predicting the likelihood of severe mental distress in college students.
Methods: A total of 2088 college students from five universities were enrolled in this study. Participants were randomly divided into a training group (80%) and a validation group (20%). Various machine learning models, including logistic regression (LR), extreme gradient boosting machine (eXGBM), decision tree (DT), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were employed and trained in this study. Model performance was evaluated using 11 metrics, and the highest scoring model was selected. In addition, external validation was conducted on 751 participants from three universities. The AI tool was then deployed as a web-based AI application.
Results: Among the models developed, the eXGBM model achieved the highest area under the curve (AUC) value of 0.932 (95% CI: 0.911-0.949), closely followed by RF with an AUC of 0.927 (95% CI: 0.905-0.943). The eXGBM model demonstrated superior performance in accuracy (0.850), precision (0.824), recall (0.890), specificity (0.810), F1 score (0.856), Brier score (0.103), log loss (0.326), and discrimination slope (0.598). The eXGBM model also received the highest score of 60 based on the evaluation scoring system, while RF achieved a score of 49. The scores of LR, DT, and SVM were only 19, 32, and 36, respectively. External validation yielded an impressive AUC value of 0.918.
Conclusions: The AI tool demonstrates promising predictive performance for identifying college students at risk of severe mental distress. It has the potential to guide intervention strategies and support early identification and preventive measures.
期刊介绍:
BMC Psychiatry is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of psychiatric disorders, as well as related molecular genetics, pathophysiology, and epidemiology.