Paula L G Oliveira, Eraldo A T Matricardi, Eder P Miguel, Ben Hur Marimon Júnior, Alba Valéria Rezende
{"title":"人工神经网络与遥感相结合,预测塞拉多生物群落的地上生物量。","authors":"Paula L G Oliveira, Eraldo A T Matricardi, Eder P Miguel, Ben Hur Marimon Júnior, Alba Valéria Rezende","doi":"10.1590/0001-3765202420221041","DOIUrl":null,"url":null,"abstract":"<p><p>Cerrado is the second largest biome in Brazil, and it is responsible for providing us several ecosystem services, including the functions of storing Carbon and biodiversity conservation. In this study, we developed a modeling approach to predict the Aboveground biomass (AGB) in Cerrado vegetation using Artificial Neural Networks (ANNs), vegetation indices retrieved from RapidEye satellite imagery, and field data acquired within the Federal District territory, Brazil. Correlation testing was performed to identify potential vegetation index candidates to be used as input in the AGB modeling. Several ANNs were trained to predict the AGB in the study area using vegetation indices and field data. The optimum ANN was selected according to criteria of mean error of the estimate, correlation coefficient, and graphical analysis. The best performing ANN showed a predictive power of 90% and RMSE less than 17%. The validation tests showed no significant difference between the observed and ANN-predicted values. We estimated an average AGB of 16.55± 8.6 Mg.ha-1 in shrublands in the study area. Our study results indicate that vegetation indices and ANNs combined could accurately estimate the AGB in the Cerrado vegetation in the study area, showing to be a promising methodological approach to be broadly applied throughout the Cerrado biome.</p>","PeriodicalId":7776,"journal":{"name":"Anais da Academia Brasileira de Ciencias","volume":"96 3","pages":"e20221041"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network and Remote Sensing combined to predict the Aboveground Biomass in the Cerrado biome.\",\"authors\":\"Paula L G Oliveira, Eraldo A T Matricardi, Eder P Miguel, Ben Hur Marimon Júnior, Alba Valéria Rezende\",\"doi\":\"10.1590/0001-3765202420221041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerrado is the second largest biome in Brazil, and it is responsible for providing us several ecosystem services, including the functions of storing Carbon and biodiversity conservation. In this study, we developed a modeling approach to predict the Aboveground biomass (AGB) in Cerrado vegetation using Artificial Neural Networks (ANNs), vegetation indices retrieved from RapidEye satellite imagery, and field data acquired within the Federal District territory, Brazil. Correlation testing was performed to identify potential vegetation index candidates to be used as input in the AGB modeling. Several ANNs were trained to predict the AGB in the study area using vegetation indices and field data. The optimum ANN was selected according to criteria of mean error of the estimate, correlation coefficient, and graphical analysis. The best performing ANN showed a predictive power of 90% and RMSE less than 17%. The validation tests showed no significant difference between the observed and ANN-predicted values. We estimated an average AGB of 16.55± 8.6 Mg.ha-1 in shrublands in the study area. Our study results indicate that vegetation indices and ANNs combined could accurately estimate the AGB in the Cerrado vegetation in the study area, showing to be a promising methodological approach to be broadly applied throughout the Cerrado biome.</p>\",\"PeriodicalId\":7776,\"journal\":{\"name\":\"Anais da Academia Brasileira de Ciencias\",\"volume\":\"96 3\",\"pages\":\"e20221041\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da Academia Brasileira de Ciencias\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1590/0001-3765202420221041\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da Academia Brasileira de Ciencias","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1590/0001-3765202420221041","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Artificial Neural Network and Remote Sensing combined to predict the Aboveground Biomass in the Cerrado biome.
Cerrado is the second largest biome in Brazil, and it is responsible for providing us several ecosystem services, including the functions of storing Carbon and biodiversity conservation. In this study, we developed a modeling approach to predict the Aboveground biomass (AGB) in Cerrado vegetation using Artificial Neural Networks (ANNs), vegetation indices retrieved from RapidEye satellite imagery, and field data acquired within the Federal District territory, Brazil. Correlation testing was performed to identify potential vegetation index candidates to be used as input in the AGB modeling. Several ANNs were trained to predict the AGB in the study area using vegetation indices and field data. The optimum ANN was selected according to criteria of mean error of the estimate, correlation coefficient, and graphical analysis. The best performing ANN showed a predictive power of 90% and RMSE less than 17%. The validation tests showed no significant difference between the observed and ANN-predicted values. We estimated an average AGB of 16.55± 8.6 Mg.ha-1 in shrublands in the study area. Our study results indicate that vegetation indices and ANNs combined could accurately estimate the AGB in the Cerrado vegetation in the study area, showing to be a promising methodological approach to be broadly applied throughout the Cerrado biome.
期刊介绍:
The Brazilian Academy of Sciences (BAS) publishes its journal, Annals of the Brazilian Academy of Sciences (AABC, in its Brazilianportuguese acronym ), every 3 months, being the oldest journal in Brazil with conkinuous distribukion, daking back to 1929. This scienkihic journal aims to publish the advances in scienkihic research from both Brazilian and foreigner scienkists, who work in the main research centers in the whole world, always looking for excellence.
Essenkially a mulkidisciplinary journal, the AABC cover, with both reviews and original researches, the diverse areas represented in the Academy, such as Biology, Physics, Biomedical Sciences, Chemistry, Agrarian Sciences, Engineering, Mathemakics, Social, Health and Earth Sciences.