Marina García-del Río, Francisco Castaño-Vázquez, Javier Martínez, Josué Martínez-de la Puente, Alejandro Cantarero, Javier García-Velasco, Yago Merino, Santiago Merino
{"title":"雏鸟的性别和行为决定了鸟巢中昆虫载体的寄主偏好。","authors":"Marina García-del Río, Francisco Castaño-Vázquez, Javier Martínez, Josué Martínez-de la Puente, Alejandro Cantarero, Javier García-Velasco, Yago Merino, Santiago Merino","doi":"10.1111/mec.17517","DOIUrl":null,"url":null,"abstract":"<p>Sexual differences in pathogen prevalence in wildlife often arise from varying susceptibility influenced by factors such as sex hormones and exposure to pathogens. In the case of vector-borne pathogens, host selection by insect vectors determines the exposure of hosts to infections, largely affecting the transmission of these infectious diseases. We identify the blood-feeding patterns of insect vectors in Blue Tit (<i>Cyanistes caeruleus</i>) nestlings in a 3-year study. Blood from both nestlings and insect vectors (<i>Culicoides</i> spp. and Simuliidae) captured inside nest-boxes were used to molecularly determine the sex of the host. We then compared the sex-ratios of the nestlings that had been bitten and those of the complete brood in each nest. We found that males were bitten more frequently than females in 2021, when males weighed less in comparison to other years. Additionally, we molecularly identified bitten nestlings individually by genotyping the DNA of blood obtained from both, the vector's abdomen and nestlings of each brood in 2022. Nestlings more frequently bitten by vectors were males, weighed less and were closest to the nest entrance. To our knowledge this is the first study identifying the nestling selection by insect vectors in bird nests under natural conditions. These results contribute to understanding the mechanisms of host selection by insect vectors, shedding light on pathogen transmission and offering insights into the observed sex-biased infections in wildlife populations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 19","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17517","citationCount":"0","resultStr":"{\"title\":\"Nestling sex and behaviour determine the host preference of insect vectors in avian nests\",\"authors\":\"Marina García-del Río, Francisco Castaño-Vázquez, Javier Martínez, Josué Martínez-de la Puente, Alejandro Cantarero, Javier García-Velasco, Yago Merino, Santiago Merino\",\"doi\":\"10.1111/mec.17517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sexual differences in pathogen prevalence in wildlife often arise from varying susceptibility influenced by factors such as sex hormones and exposure to pathogens. In the case of vector-borne pathogens, host selection by insect vectors determines the exposure of hosts to infections, largely affecting the transmission of these infectious diseases. We identify the blood-feeding patterns of insect vectors in Blue Tit (<i>Cyanistes caeruleus</i>) nestlings in a 3-year study. Blood from both nestlings and insect vectors (<i>Culicoides</i> spp. and Simuliidae) captured inside nest-boxes were used to molecularly determine the sex of the host. We then compared the sex-ratios of the nestlings that had been bitten and those of the complete brood in each nest. We found that males were bitten more frequently than females in 2021, when males weighed less in comparison to other years. Additionally, we molecularly identified bitten nestlings individually by genotyping the DNA of blood obtained from both, the vector's abdomen and nestlings of each brood in 2022. Nestlings more frequently bitten by vectors were males, weighed less and were closest to the nest entrance. To our knowledge this is the first study identifying the nestling selection by insect vectors in bird nests under natural conditions. These results contribute to understanding the mechanisms of host selection by insect vectors, shedding light on pathogen transmission and offering insights into the observed sex-biased infections in wildlife populations.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"33 19\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17517\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17517\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17517","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nestling sex and behaviour determine the host preference of insect vectors in avian nests
Sexual differences in pathogen prevalence in wildlife often arise from varying susceptibility influenced by factors such as sex hormones and exposure to pathogens. In the case of vector-borne pathogens, host selection by insect vectors determines the exposure of hosts to infections, largely affecting the transmission of these infectious diseases. We identify the blood-feeding patterns of insect vectors in Blue Tit (Cyanistes caeruleus) nestlings in a 3-year study. Blood from both nestlings and insect vectors (Culicoides spp. and Simuliidae) captured inside nest-boxes were used to molecularly determine the sex of the host. We then compared the sex-ratios of the nestlings that had been bitten and those of the complete brood in each nest. We found that males were bitten more frequently than females in 2021, when males weighed less in comparison to other years. Additionally, we molecularly identified bitten nestlings individually by genotyping the DNA of blood obtained from both, the vector's abdomen and nestlings of each brood in 2022. Nestlings more frequently bitten by vectors were males, weighed less and were closest to the nest entrance. To our knowledge this is the first study identifying the nestling selection by insect vectors in bird nests under natural conditions. These results contribute to understanding the mechanisms of host selection by insect vectors, shedding light on pathogen transmission and offering insights into the observed sex-biased infections in wildlife populations.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms