Andreas Aigner, Filip Ligmajer, Katarína Rovenská, Jakub Holobrádek, Beáta Idesová, Stefan A Maier, Andreas Tittl, Leonardo de S Menezes
{"title":"基于高质量系数的二氧化钒 BIC 金属表面的有源和无源损耗工程。","authors":"Andreas Aigner, Filip Ligmajer, Katarína Rovenská, Jakub Holobrádek, Beáta Idesová, Stefan A Maier, Andreas Tittl, Leonardo de S Menezes","doi":"10.1021/acs.nanolett.4c01703","DOIUrl":null,"url":null,"abstract":"<p><p>Active functionalities of metasurfaces are of growing interest in nanophotonics. The main strategy employed to date is spectral resonance tuning affecting predominantly the far-field response. However, this barely influences other essential resonance properties like near-field enhancement, signal modulation, quality factor, and absorbance, which are all vital for numerous applications. Here we introduce an active metasurface approach that combines temperature-tunable losses in vanadium dioxide with far-field coupling tunable symmetry-protected bound states in the continuum. This method enables exceptional precision in independently controlling both radiative and nonradiative losses. Consequently, it allows for the adjustment of both the far-field response and, notably, the near-field characteristics like local field enhancement and absorbance. We experimentally demonstrate continuous tuning from under- through critical- to overcoupling, achieving quality factors of 200 and a relative switching contrast of 78%. Our research marks a significant step toward highly tunable metasurfaces, controlling both near- and far-field properties.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"10742-10749"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389864/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering of Active and Passive Loss in High-Quality-Factor Vanadium Dioxide-Based BIC Metasurfaces.\",\"authors\":\"Andreas Aigner, Filip Ligmajer, Katarína Rovenská, Jakub Holobrádek, Beáta Idesová, Stefan A Maier, Andreas Tittl, Leonardo de S Menezes\",\"doi\":\"10.1021/acs.nanolett.4c01703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active functionalities of metasurfaces are of growing interest in nanophotonics. The main strategy employed to date is spectral resonance tuning affecting predominantly the far-field response. However, this barely influences other essential resonance properties like near-field enhancement, signal modulation, quality factor, and absorbance, which are all vital for numerous applications. Here we introduce an active metasurface approach that combines temperature-tunable losses in vanadium dioxide with far-field coupling tunable symmetry-protected bound states in the continuum. This method enables exceptional precision in independently controlling both radiative and nonradiative losses. Consequently, it allows for the adjustment of both the far-field response and, notably, the near-field characteristics like local field enhancement and absorbance. We experimentally demonstrate continuous tuning from under- through critical- to overcoupling, achieving quality factors of 200 and a relative switching contrast of 78%. Our research marks a significant step toward highly tunable metasurfaces, controlling both near- and far-field properties.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"10742-10749\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c01703\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01703","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering of Active and Passive Loss in High-Quality-Factor Vanadium Dioxide-Based BIC Metasurfaces.
Active functionalities of metasurfaces are of growing interest in nanophotonics. The main strategy employed to date is spectral resonance tuning affecting predominantly the far-field response. However, this barely influences other essential resonance properties like near-field enhancement, signal modulation, quality factor, and absorbance, which are all vital for numerous applications. Here we introduce an active metasurface approach that combines temperature-tunable losses in vanadium dioxide with far-field coupling tunable symmetry-protected bound states in the continuum. This method enables exceptional precision in independently controlling both radiative and nonradiative losses. Consequently, it allows for the adjustment of both the far-field response and, notably, the near-field characteristics like local field enhancement and absorbance. We experimentally demonstrate continuous tuning from under- through critical- to overcoupling, achieving quality factors of 200 and a relative switching contrast of 78%. Our research marks a significant step toward highly tunable metasurfaces, controlling both near- and far-field properties.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.