内皮细胞启发的血液兼容硅酮表面:防污特性与内皮细胞选择性之间的优雅平衡。

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2024-11-11 Epub Date: 2024-08-27 DOI:10.1021/acs.biomac.4c00890
Qiulian Wu, Shuaihang Guo, Xinyi Liang, Wei Sun, Jiao Lei, Lisha Pan, Xiaoli Liu, Hong Chen
{"title":"内皮细胞启发的血液兼容硅酮表面:防污特性与内皮细胞选择性之间的优雅平衡。","authors":"Qiulian Wu, Shuaihang Guo, Xinyi Liang, Wei Sun, Jiao Lei, Lisha Pan, Xiaoli Liu, Hong Chen","doi":"10.1021/acs.biomac.4c00890","DOIUrl":null,"url":null,"abstract":"<p><p>To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity.\",\"authors\":\"Qiulian Wu, Shuaihang Guo, Xinyi Liang, Wei Sun, Jiao Lei, Lisha Pan, Xiaoli Liu, Hong Chen\",\"doi\":\"10.1021/acs.biomac.4c00890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00890\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00890","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决因植入血液接触材料而引起的不良反应,研究人员开发了不同的策略,其中模仿内皮细胞的多个关键特征最为有效。然而,在单一材料表面同时固定多种化学成分并保持单个成分的效果是一项挑战。在这项工作中,通过加入防污聚合物聚(低聚(乙二醇)甲基丙烯酸酯)、糖胺聚糖类似物聚(4-乙烯基苯磺酸钠)和一氧化氮催化剂(硒代胱胺二盐酸盐),开发出了模拟内皮细胞的硅胶表面。通过对多种化学成分的合理调控,这些表面和谐地抵制了非特异性蛋白质吸附、血小板粘附和活化以及平滑肌细胞过度增殖,同时促进了内皮细胞的增殖和迁移。HUVECs 和 HUVSMCs 的共培养实验表明,HUVECs/HUVSMCs 的最佳选择性为 1.7。这项工作有助于深入了解防污特性和内皮选择性的控制,为血液接触材料的开发提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity.

Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity.

To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信