Luis E Herrera Rodríguez, Aarti Sindhu, Kennet J Rueda Espinosa, Alexei A Kananenka
{"title":"空腔介导的还原 Fenna-Matthews-Olson 复合物能量转移的增强。","authors":"Luis E Herrera Rodríguez, Aarti Sindhu, Kennet J Rueda Espinosa, Alexei A Kananenka","doi":"10.1021/acs.jctc.4c00626","DOIUrl":null,"url":null,"abstract":"<p><p>Strong light-matter interaction leads to the formation of hybrid polariton states and can alter the light-harvesting properties of natural photosynthetic systems without modifying their chemical structure. In the present study, we computationally investigate the effect of the resonant cavity on the efficiency and the rate of the population transfer in a quantum system coupled to the cavity and the dissipative environment. The parameters of the model system were chosen to represent the Fenna-Matthews-Olson natural light-harvesting complex reduced to the three essential sites. The dynamics of the total system was propagated using the hierarchical equations of motion. Our results show that the strong light-matter interaction can accelerate the population transfer process compared to the cavity-free case but at the cost of lowering the transfer efficiency. The transition to the strong coupling regime was found to coincide with the degeneracy of polariton eigenvalues. Our findings indicate the potential and the limit of tuning the energy transfer in already efficient natural light-harvesting systems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cavity-Mediated Enhancement of the Energy Transfer in the Reduced Fenna-Matthews-Olson Complex.\",\"authors\":\"Luis E Herrera Rodríguez, Aarti Sindhu, Kennet J Rueda Espinosa, Alexei A Kananenka\",\"doi\":\"10.1021/acs.jctc.4c00626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Strong light-matter interaction leads to the formation of hybrid polariton states and can alter the light-harvesting properties of natural photosynthetic systems without modifying their chemical structure. In the present study, we computationally investigate the effect of the resonant cavity on the efficiency and the rate of the population transfer in a quantum system coupled to the cavity and the dissipative environment. The parameters of the model system were chosen to represent the Fenna-Matthews-Olson natural light-harvesting complex reduced to the three essential sites. The dynamics of the total system was propagated using the hierarchical equations of motion. Our results show that the strong light-matter interaction can accelerate the population transfer process compared to the cavity-free case but at the cost of lowering the transfer efficiency. The transition to the strong coupling regime was found to coincide with the degeneracy of polariton eigenvalues. Our findings indicate the potential and the limit of tuning the energy transfer in already efficient natural light-harvesting systems.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00626\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00626","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cavity-Mediated Enhancement of the Energy Transfer in the Reduced Fenna-Matthews-Olson Complex.
Strong light-matter interaction leads to the formation of hybrid polariton states and can alter the light-harvesting properties of natural photosynthetic systems without modifying their chemical structure. In the present study, we computationally investigate the effect of the resonant cavity on the efficiency and the rate of the population transfer in a quantum system coupled to the cavity and the dissipative environment. The parameters of the model system were chosen to represent the Fenna-Matthews-Olson natural light-harvesting complex reduced to the three essential sites. The dynamics of the total system was propagated using the hierarchical equations of motion. Our results show that the strong light-matter interaction can accelerate the population transfer process compared to the cavity-free case but at the cost of lowering the transfer efficiency. The transition to the strong coupling regime was found to coincide with the degeneracy of polariton eigenvalues. Our findings indicate the potential and the limit of tuning the energy transfer in already efficient natural light-harvesting systems.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.