使用无模型无监督学习进行真实世界图像衍生

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rongwei Yu, Jingyi Xiang, Ni Shu, Peihao Zhang, Yizhan Li, Yiyang Shen, Weiming Wang, Lina Wang
{"title":"使用无模型无监督学习进行真实世界图像衍生","authors":"Rongwei Yu,&nbsp;Jingyi Xiang,&nbsp;Ni Shu,&nbsp;Peihao Zhang,&nbsp;Yizhan Li,&nbsp;Yiyang Shen,&nbsp;Weiming Wang,&nbsp;Lina Wang","doi":"10.1155/2024/7454928","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7454928","citationCount":"0","resultStr":"{\"title\":\"Real-World Image Deraining Using Model-Free Unsupervised Learning\",\"authors\":\"Rongwei Yu,&nbsp;Jingyi Xiang,&nbsp;Ni Shu,&nbsp;Peihao Zhang,&nbsp;Yizhan Li,&nbsp;Yiyang Shen,&nbsp;Weiming Wang,&nbsp;Lina Wang\",\"doi\":\"10.1155/2024/7454928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7454928\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7454928\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7454928","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的无模型无监督学习范式,以解决现实世界中普遍存在的不利于图像去污的问题,这种范式被称为 MUL-Derain。与现有的无监督派生方法相比,MUL-Derain 利用无模型多尺度注意力过滤(MSAF)来处理多尺度雨条纹。因此,它不需要任何雨水成像公式,也不需要迭代优化或逐步细化操作。同时,MUL-Derain 可以通过对长程依赖性建模,有效计算空间一致性和全局交互作用,从而使 MSAF 能够从更大甚至全球雨区中学习有用的知识。此外,我们还制定了一个新颖的多损失函数,以约束 MUL-Derain 从雨天图像中保留颜色和结构信息。在合成数据集和真实数据集上进行的大量实验表明,我们的 MUL-Derain 比非半监督方法获得了最先进的性能,并且比完全监督方法更具竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Real-World Image Deraining Using Model-Free Unsupervised Learning

Real-World Image Deraining Using Model-Free Unsupervised Learning

We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信