Rongwei Yu, Jingyi Xiang, Ni Shu, Peihao Zhang, Yizhan Li, Yiyang Shen, Weiming Wang, Lina Wang
{"title":"使用无模型无监督学习进行真实世界图像衍生","authors":"Rongwei Yu, Jingyi Xiang, Ni Shu, Peihao Zhang, Yizhan Li, Yiyang Shen, Weiming Wang, Lina Wang","doi":"10.1155/2024/7454928","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7454928","citationCount":"0","resultStr":"{\"title\":\"Real-World Image Deraining Using Model-Free Unsupervised Learning\",\"authors\":\"Rongwei Yu, Jingyi Xiang, Ni Shu, Peihao Zhang, Yizhan Li, Yiyang Shen, Weiming Wang, Lina Wang\",\"doi\":\"10.1155/2024/7454928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7454928\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7454928\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7454928","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-World Image Deraining Using Model-Free Unsupervised Learning
We propose a novel model-free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real-world image deraining, dubbed MUL-Derain. Beyond existing unsupervised deraining efforts, MUL-Derain leverages a model-free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL-Derain can efficiently compute spatial coherence and global interactions by modeling long-range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL-Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real-world datasets demonstrate that our MUL-Derain obtains state-of-the-art performance over un/semisupervised methods and exhibits competitive advantages over the fully-supervised ones.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.