Jinlian He, Xinyi Dai, Ziyang Wang, Jingjie Ye, Jiangbo Wang, Jun Feng, Xian-Zheng Zhang
{"title":"构建具有高耐水性的无药碳酸氢钠纳米颗粒,用于气体疗法,选择性诱导癌细胞非凋亡死亡","authors":"Jinlian He, Xinyi Dai, Ziyang Wang, Jingjie Ye, Jiangbo Wang, Jun Feng, Xian-Zheng Zhang","doi":"10.1016/j.nantod.2024.102463","DOIUrl":null,"url":null,"abstract":"<div><p>Developing drug-free nanotherapeutics is extremely appealing provided they could achieve effective therapeutic performances. This study proposes a sodium bicarbonate-dependent gas therapy modality targeting fragile lysosomes of cancer cells through carbon dioxide-induced lysosomal rupture. Interestingly, we reveal that this gas therapy induces cell death through the combination of necrosis, pyroptosis and ferroptosis, rather than the conventional apoptosis pathway. Notably, the high water-solubility of sodium bicarbonate presents a significant challenge in engineering its nanotherapeutics that require long-term water-tolerance for its intravenous delivery. To address this issue, an EPDPPP approach is here developed under aqueous conditions. Without any anticancer drugs, the sodium bicarbonate nanoparticles alone can selectively kill cancer cells with high specificity. Thanks to the high water tolerance, the sodium bicarbonate nanoparticles coated with cancer cell membranes have shown favorable performance in targeting and inhibiting tumors after intravenous administration. This water-tolerant sodium bicarbonate nanoplatform is expected to have potential applications in various medical fields, including the targeted gas therapy. Additionally, this study may suggest a viable direction for developing water-tolerant nanoparticles derived from water-soluble inorganic salts.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"58 ","pages":"Article 102463"},"PeriodicalIF":13.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of drug-free sodium bicarbonate nanoparticles with high water-tolerance for gas therapy to selectively induce non-apoptotic death of cancer cells\",\"authors\":\"Jinlian He, Xinyi Dai, Ziyang Wang, Jingjie Ye, Jiangbo Wang, Jun Feng, Xian-Zheng Zhang\",\"doi\":\"10.1016/j.nantod.2024.102463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing drug-free nanotherapeutics is extremely appealing provided they could achieve effective therapeutic performances. This study proposes a sodium bicarbonate-dependent gas therapy modality targeting fragile lysosomes of cancer cells through carbon dioxide-induced lysosomal rupture. Interestingly, we reveal that this gas therapy induces cell death through the combination of necrosis, pyroptosis and ferroptosis, rather than the conventional apoptosis pathway. Notably, the high water-solubility of sodium bicarbonate presents a significant challenge in engineering its nanotherapeutics that require long-term water-tolerance for its intravenous delivery. To address this issue, an EPDPPP approach is here developed under aqueous conditions. Without any anticancer drugs, the sodium bicarbonate nanoparticles alone can selectively kill cancer cells with high specificity. Thanks to the high water tolerance, the sodium bicarbonate nanoparticles coated with cancer cell membranes have shown favorable performance in targeting and inhibiting tumors after intravenous administration. This water-tolerant sodium bicarbonate nanoplatform is expected to have potential applications in various medical fields, including the targeted gas therapy. Additionally, this study may suggest a viable direction for developing water-tolerant nanoparticles derived from water-soluble inorganic salts.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"58 \",\"pages\":\"Article 102463\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003190\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Construction of drug-free sodium bicarbonate nanoparticles with high water-tolerance for gas therapy to selectively induce non-apoptotic death of cancer cells
Developing drug-free nanotherapeutics is extremely appealing provided they could achieve effective therapeutic performances. This study proposes a sodium bicarbonate-dependent gas therapy modality targeting fragile lysosomes of cancer cells through carbon dioxide-induced lysosomal rupture. Interestingly, we reveal that this gas therapy induces cell death through the combination of necrosis, pyroptosis and ferroptosis, rather than the conventional apoptosis pathway. Notably, the high water-solubility of sodium bicarbonate presents a significant challenge in engineering its nanotherapeutics that require long-term water-tolerance for its intravenous delivery. To address this issue, an EPDPPP approach is here developed under aqueous conditions. Without any anticancer drugs, the sodium bicarbonate nanoparticles alone can selectively kill cancer cells with high specificity. Thanks to the high water tolerance, the sodium bicarbonate nanoparticles coated with cancer cell membranes have shown favorable performance in targeting and inhibiting tumors after intravenous administration. This water-tolerant sodium bicarbonate nanoplatform is expected to have potential applications in various medical fields, including the targeted gas therapy. Additionally, this study may suggest a viable direction for developing water-tolerant nanoparticles derived from water-soluble inorganic salts.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.