Jacquie R. Baker PhD , Anthony V. Incognito PhD , Shaun I. Ranada BSc , Robert S. Sheldon MD, PhD , Keith A. Sharkey PhD , Aaron A. Phillips PhD , Richard J.A. Wilson PhD , Satish R. Raj MD
{"title":"体位性正位性心动过速综合征患者脑卒中量减少和脑灌注减少驱动体位性过度换气","authors":"Jacquie R. Baker PhD , Anthony V. Incognito PhD , Shaun I. Ranada BSc , Robert S. Sheldon MD, PhD , Keith A. Sharkey PhD , Aaron A. Phillips PhD , Richard J.A. Wilson PhD , Satish R. Raj MD","doi":"10.1016/j.jacbts.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>Postural hyperventilation has been implicated as a cause of postural orthostatic tachycardia syndrome (POTS), yet the precise mechanisms underlying the heightened breathing response remain unclear. This study challenges current hypotheses by revealing that exaggerated peripheral chemoreceptor activity is not the primary driver of postural hyperventilation. Instead, significant contributions from reduced stroke volume and compromised brain perfusion during orthostatic stress were identified. These findings shed light on our understanding of POTS pathophysiology, emphasizing the critical roles of systemic hemodynamic status. Further research should explore interventions targeting stroke volume and brain perfusion for more effective clinical management of POTS.</p></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 8","pages":"Pages 939-953"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452302X24001840/pdfft?md5=b5757b235b6cd1cded084a5319731689&pid=1-s2.0-S2452302X24001840-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reduced Stroke Volume and Brain Perfusion Drive Postural Hyperventilation in Postural Orthostatic Tachycardia Syndrome\",\"authors\":\"Jacquie R. Baker PhD , Anthony V. Incognito PhD , Shaun I. Ranada BSc , Robert S. Sheldon MD, PhD , Keith A. Sharkey PhD , Aaron A. Phillips PhD , Richard J.A. Wilson PhD , Satish R. Raj MD\",\"doi\":\"10.1016/j.jacbts.2024.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Postural hyperventilation has been implicated as a cause of postural orthostatic tachycardia syndrome (POTS), yet the precise mechanisms underlying the heightened breathing response remain unclear. This study challenges current hypotheses by revealing that exaggerated peripheral chemoreceptor activity is not the primary driver of postural hyperventilation. Instead, significant contributions from reduced stroke volume and compromised brain perfusion during orthostatic stress were identified. These findings shed light on our understanding of POTS pathophysiology, emphasizing the critical roles of systemic hemodynamic status. Further research should explore interventions targeting stroke volume and brain perfusion for more effective clinical management of POTS.</p></div>\",\"PeriodicalId\":14831,\"journal\":{\"name\":\"JACC: Basic to Translational Science\",\"volume\":\"9 8\",\"pages\":\"Pages 939-953\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452302X24001840/pdfft?md5=b5757b235b6cd1cded084a5319731689&pid=1-s2.0-S2452302X24001840-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC: Basic to Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452302X24001840\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X24001840","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Reduced Stroke Volume and Brain Perfusion Drive Postural Hyperventilation in Postural Orthostatic Tachycardia Syndrome
Postural hyperventilation has been implicated as a cause of postural orthostatic tachycardia syndrome (POTS), yet the precise mechanisms underlying the heightened breathing response remain unclear. This study challenges current hypotheses by revealing that exaggerated peripheral chemoreceptor activity is not the primary driver of postural hyperventilation. Instead, significant contributions from reduced stroke volume and compromised brain perfusion during orthostatic stress were identified. These findings shed light on our understanding of POTS pathophysiology, emphasizing the critical roles of systemic hemodynamic status. Further research should explore interventions targeting stroke volume and brain perfusion for more effective clinical management of POTS.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.