沿海和河口地区水环境评估综合模拟的网络应用

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yoshitaka Matsuzaki , Tetsunori Inoue , Masaya Kubota , Hiroki Matsumoto , Tomoyuki Sato , Hikari Sakamoto , Daisuke Naito
{"title":"沿海和河口地区水环境评估综合模拟的网络应用","authors":"Yoshitaka Matsuzaki ,&nbsp;Tetsunori Inoue ,&nbsp;Masaya Kubota ,&nbsp;Hiroki Matsumoto ,&nbsp;Tomoyuki Sato ,&nbsp;Hikari Sakamoto ,&nbsp;Daisuke Naito","doi":"10.1016/j.envsoft.2024.106184","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces the web application-type Graphical User Interface that has been developed and also presents an application example. The introduced simulator conducts hydrodynamics and ecosystems in coastal and estuarine areas. It consists of (1) a hydrodynamic model that can simulate the current velocity, water temperature, salinity, and water level; (2) an ecosystem model that can simulate dissolved oxygen, phytoplankton, zooplankton, nutrients, fish, and bivalves; and (3) a benthic ecosystem model that can simulate elution. Web GUI is the first web system of aquatic environment simulation system that can both prepare calculation conditions and visualize them. Another significant feature is that it requires no installation and can be easily used by anyone to perform calculations. Thus, the proposed system helps fill the expertise gap experienced by potential users of the model. The use of standard systems, such as those discussed in this study, will facilitate evidence-based policymaking (EBPM).</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106184"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002457/pdfft?md5=50affda9fd41d1b57556dae1043a0eff&pid=1-s2.0-S1364815224002457-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Web application of an integrated simulation for aquatic environment assessment in coastal and estuarine areas\",\"authors\":\"Yoshitaka Matsuzaki ,&nbsp;Tetsunori Inoue ,&nbsp;Masaya Kubota ,&nbsp;Hiroki Matsumoto ,&nbsp;Tomoyuki Sato ,&nbsp;Hikari Sakamoto ,&nbsp;Daisuke Naito\",\"doi\":\"10.1016/j.envsoft.2024.106184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces the web application-type Graphical User Interface that has been developed and also presents an application example. The introduced simulator conducts hydrodynamics and ecosystems in coastal and estuarine areas. It consists of (1) a hydrodynamic model that can simulate the current velocity, water temperature, salinity, and water level; (2) an ecosystem model that can simulate dissolved oxygen, phytoplankton, zooplankton, nutrients, fish, and bivalves; and (3) a benthic ecosystem model that can simulate elution. Web GUI is the first web system of aquatic environment simulation system that can both prepare calculation conditions and visualize them. Another significant feature is that it requires no installation and can be easily used by anyone to perform calculations. Thus, the proposed system helps fill the expertise gap experienced by potential users of the model. The use of standard systems, such as those discussed in this study, will facilitate evidence-based policymaking (EBPM).</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"181 \",\"pages\":\"Article 106184\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002457/pdfft?md5=50affda9fd41d1b57556dae1043a0eff&pid=1-s2.0-S1364815224002457-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002457\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002457","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了已开发的网络应用型图形用户界面,并提供了一个应用实例。所介绍的模拟器用于沿海和河口地区的水动力和生态系统。它包括:(1) 可模拟流速、水温、盐度和水位的水动力模型;(2) 可模拟溶解氧、浮游植物、浮游动物、营养物质、鱼类和双壳类动物的生态系统模型;(3) 可模拟洗脱的底栖生态系统模型。Web GUI 是第一个水生环境模拟系统的网络系统,它既能准备计算条件,又能将计算条件可视化。它的另一个显著特点是无需安装,任何人都可以轻松使用它进行计算。因此,拟议的系统有助于填补模型潜在用户的专业知识空白。使用标准系统(如本研究中讨论的系统)将有助于循证决策 (EBPM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Web application of an integrated simulation for aquatic environment assessment in coastal and estuarine areas

Web application of an integrated simulation for aquatic environment assessment in coastal and estuarine areas

This paper introduces the web application-type Graphical User Interface that has been developed and also presents an application example. The introduced simulator conducts hydrodynamics and ecosystems in coastal and estuarine areas. It consists of (1) a hydrodynamic model that can simulate the current velocity, water temperature, salinity, and water level; (2) an ecosystem model that can simulate dissolved oxygen, phytoplankton, zooplankton, nutrients, fish, and bivalves; and (3) a benthic ecosystem model that can simulate elution. Web GUI is the first web system of aquatic environment simulation system that can both prepare calculation conditions and visualize them. Another significant feature is that it requires no installation and can be easily used by anyone to perform calculations. Thus, the proposed system helps fill the expertise gap experienced by potential users of the model. The use of standard systems, such as those discussed in this study, will facilitate evidence-based policymaking (EBPM).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信