具有亚线性增长的耦合椭圆系统

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. Arratia, P. Ubilla
{"title":"具有亚线性增长的耦合椭圆系统","authors":"J. Arratia,&nbsp;P. Ubilla","doi":"10.1016/j.na.2024.113627","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the coupled elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><mi>λ</mi><mi>v</mi></mtd><mtd><mtext>in</mtext></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>v</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><mi>λ</mi><mi>u</mi></mtd><mtd><mtext>in</mtext></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mtd><mtd><mtext>as</mtext></mtd><mtd><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>We observe that in 2008, A. Ambrosetti, G. Cerami and D. Ruiz proved the existence of positive bound and ground states in the case <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo></mrow></math></span> <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> tends to one at infinity. In this work we complement their result, because we show that the previous system has no solutions when <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, as well as we establish sharp hypotheses on the powers <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace></mrow></math></span> the parameter <span><math><mi>λ</mi></math></span> and the weights <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> that will allow us to obtain the existence and uniqueness of a positive bounded solution.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001469/pdfft?md5=01ed59f01a98b70d3c1e8964544d608f&pid=1-s2.0-S0362546X24001469-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Coupled Elliptic systems with sublinear growth\",\"authors\":\"J. Arratia,&nbsp;P. Ubilla\",\"doi\":\"10.1016/j.na.2024.113627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider the coupled elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><mi>λ</mi><mi>v</mi></mtd><mtd><mtext>in</mtext></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>v</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><mi>λ</mi><mi>u</mi></mtd><mtd><mtext>in</mtext></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mtd><mtd><mtext>as</mtext></mtd><mtd><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>We observe that in 2008, A. Ambrosetti, G. Cerami and D. Ruiz proved the existence of positive bound and ground states in the case <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo></mrow></math></span> <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> tends to one at infinity. In this work we complement their result, because we show that the previous system has no solutions when <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, as well as we establish sharp hypotheses on the powers <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace></mrow></math></span> the parameter <span><math><mi>λ</mi></math></span> and the weights <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> that will allow us to obtain the existence and uniqueness of a positive bounded solution.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001469/pdfft?md5=01ed59f01a98b70d3c1e8964544d608f&pid=1-s2.0-S0362546X24001469-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001469\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑耦合椭圆系统-Δu+u=ρ1(x)up1+λvinRN-Δv+v=ρ2(x)vp2+λuinRN,u(x),v(x)→0as|x|→∞。Ruiz证明了在λ∈(0,1)、p1=p=p2、1<p<2∗-1、ρ1(x)和ρ2(x)在无穷大处趋向于1的情况下存在正边界和基态。在这项工作中,我们对他们的结果进行了补充,因为我们证明了前一个系统在 0<p1,p2<1 时没有解,而且我们对参数 λ 和权重 ρ1(x), ρ2(x)的幂 0<p1,p2 建立了尖锐的假设,这将使我们获得一个正的有界解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Elliptic systems with sublinear growth

Consider the coupled elliptic system Δu+u=ρ1(x)up1+λvinRNΔv+v=ρ2(x)vp2+λuinRN,u(x),v(x)0as|x|.We observe that in 2008, A. Ambrosetti, G. Cerami and D. Ruiz proved the existence of positive bound and ground states in the case λ(0,1), p1=p=p2, 1<p<21, ρ1(x) and ρ2(x) tends to one at infinity. In this work we complement their result, because we show that the previous system has no solutions when 0<p1,p2<1, as well as we establish sharp hypotheses on the powers 0<p1,p2 the parameter λ and the weights ρ1(x), ρ2(x) that will allow us to obtain the existence and uniqueness of a positive bounded solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信