分布非负本征曲率弱规则曲面的凸性

IF 1.7 2区 数学 Q1 MATHEMATICS
Mohammad Reza Pakzad
{"title":"分布非负本征曲率弱规则曲面的凸性","authors":"Mohammad Reza Pakzad","doi":"10.1016/j.jfa.2024.110616","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the image of an isometric embedding into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> of a two dimensional complete Riemannian manifold <span><math><mo>(</mo><mi>Σ</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> without boundary is a convex surface, provided that, first, both the embedding and the metric <em>g</em> enjoy a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity for some <span><math><mi>α</mi><mo>&gt;</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span>, and second, the distributional Gaussian curvature of <em>g</em> is nonnegative and nonzero. The analysis must pass through some key observations regarding solutions to the very weak Monge-Ampère equation.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexity of weakly regular surfaces of distributional nonnegative intrinsic curvature\",\"authors\":\"Mohammad Reza Pakzad\",\"doi\":\"10.1016/j.jfa.2024.110616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the image of an isometric embedding into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> of a two dimensional complete Riemannian manifold <span><math><mo>(</mo><mi>Σ</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> without boundary is a convex surface, provided that, first, both the embedding and the metric <em>g</em> enjoy a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity for some <span><math><mi>α</mi><mo>&gt;</mo><mn>2</mn><mo>/</mo><mn>3</mn></math></span>, and second, the distributional Gaussian curvature of <em>g</em> is nonnegative and nonzero. The analysis must pass through some key observations regarding solutions to the very weak Monge-Ampère equation.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003045\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,二维完整黎曼流形 (Σ,g) 的无边界等距嵌入 R3 的图像是一个凸面,前提是:第一,嵌入和度量 g 对于某个 α>2/3 都具有 C1,α 正则性;第二,g 的分布高斯曲率是非负非零的。分析必须通过对极弱蒙日-安培方程解的一些关键观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convexity of weakly regular surfaces of distributional nonnegative intrinsic curvature

We prove that the image of an isometric embedding into R3 of a two dimensional complete Riemannian manifold (Σ,g) without boundary is a convex surface, provided that, first, both the embedding and the metric g enjoy a C1,α regularity for some α>2/3, and second, the distributional Gaussian curvature of g is nonnegative and nonzero. The analysis must pass through some key observations regarding solutions to the very weak Monge-Ampère equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信