映射环的几何埃利奥特不变性和非交换刚性

IF 1.7 2区 数学 Q1 MATHEMATICS
Hao Guo , Valerio Proietti , Hang Wang
{"title":"映射环的几何埃利奥特不变性和非交换刚性","authors":"Hao Guo ,&nbsp;Valerio Proietti ,&nbsp;Hang Wang","doi":"10.1016/j.jfa.2024.110625","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions on a compact space can be lifted to an isomorphism of their foliation <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 11","pages":"Article 110625"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003136/pdfft?md5=a1cbbfe5bdbc4ef488f7c160f8a48b02&pid=1-s2.0-S0022123624003136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A geometric Elliott invariant and noncommutative rigidity of mapping tori\",\"authors\":\"Hao Guo ,&nbsp;Valerio Proietti ,&nbsp;Hang Wang\",\"doi\":\"10.1016/j.jfa.2024.110625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions on a compact space can be lifted to an isomorphism of their foliation <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"287 11\",\"pages\":\"Article 110625\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003136/pdfft?md5=a1cbbfe5bdbc4ef488f7c160f8a48b02&pid=1-s2.0-S0022123624003136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003136\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用非交换几何学的工具证明了与最小拓扑动力系统相关的映射环的刚性属性。更确切地说,我们证明了在温和的几何假设条件下,与紧凑空间上的 Zd 作用相关的两个映射环的叶向同调等价性可以提升为它们的叶状 C⁎-代数的同构性。这一性质是叶子空间奇异的叶状空间中拓扑刚性的非交换类似物,其中 C⁎-代数的同构类型取代了同构类型。我们的技术是利用来自映射环的拓扑和索引理论数据,开发出一种几何方法来实现埃利奥特不变量。我们还讨论了如何将我们的构造扩展到由简单连通的可解李群的离散可紧密子群的作用所产生的稍微更一般的同调商,以及如何将该理论应用于某些康托最小系统的磁隙标注问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric Elliott invariant and noncommutative rigidity of mapping tori

We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to Zd-actions on a compact space can be lifted to an isomorphism of their foliation C-algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the C-algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信