{"title":"映射环的几何埃利奥特不变性和非交换刚性","authors":"Hao Guo , Valerio Proietti , Hang Wang","doi":"10.1016/j.jfa.2024.110625","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions on a compact space can be lifted to an isomorphism of their foliation <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 11","pages":"Article 110625"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003136/pdfft?md5=a1cbbfe5bdbc4ef488f7c160f8a48b02&pid=1-s2.0-S0022123624003136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A geometric Elliott invariant and noncommutative rigidity of mapping tori\",\"authors\":\"Hao Guo , Valerio Proietti , Hang Wang\",\"doi\":\"10.1016/j.jfa.2024.110625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions on a compact space can be lifted to an isomorphism of their foliation <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"287 11\",\"pages\":\"Article 110625\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003136/pdfft?md5=a1cbbfe5bdbc4ef488f7c160f8a48b02&pid=1-s2.0-S0022123624003136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003136\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A geometric Elliott invariant and noncommutative rigidity of mapping tori
We prove a rigidity property for mapping tori associated to minimal topological dynamical systems using tools from noncommutative geometry. More precisely, we show that under mild geometric assumptions, a leafwise homotopy equivalence of two mapping tori associated to -actions on a compact space can be lifted to an isomorphism of their foliation -algebras. This property is a noncommutative analogue of topological rigidity in the context of foliated spaces whose space of leaves is singular, where isomorphism type of the -algebra replaces homeomorphism type. Our technique is to develop a geometric approach to the Elliott invariant that relies on topological and index-theoretic data from the mapping torus. We also discuss how our construction can be extended to slightly more general homotopy quotients arising from actions of discrete cocompact subgroups of simply connected solvable Lie groups, as well as how the theory can be applied to the magnetic gap-labelling problem for certain Cantor minimal systems.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis