{"title":"褪黑激素:发现、生物合成、植物激素的相互作用以及在非生物胁迫条件下对农作物的作用","authors":"","doi":"10.1016/j.envexpbot.2024.105942","DOIUrl":null,"url":null,"abstract":"<div><p>Melatonin (MEL) has recently received ample attention as a potential biostimulator in agriculture. MEL has been considered a feasible and effective approach for improving crop output and resilience to various abiotic factors. The first step of MEL biosynthesis in plants is tryptophan (an amino acid), made <em>de novo</em> via the shikimic acid pathway. The processes involved in MEL biosynthesis and plant regulation are described in this review, providing a foundation for understanding the hormone's numerous physiological actions. The research delves into the intricate relationships between MEL and abiotic stresses, such as exposure to drought, salt, heat, cold, and heavy metals. This review provides an overview of recent research on the potential roles of MEL on seed germination, growth, and development in plants, highlighting its benefits for improving crop yield and quality and mitigating the detrimental effects of several abiotic stresses. It also discusses the current understanding of MEL's role as a biostimulator in agriculture, promoting root development, flowering, fruit ripening, and preventing leaf senescence. Furthermore, it summarizes the interplay of MEL with various phytohormones, including cytokinin (CK), auxin (Aux), ethylene (ETH), gibberellic acid (GA), salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), polyamines (PAs), brassinosteroid (BR), and signalling molecules such as NO, H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>S, and Ca<sup>2+</sup>. MEL shows synergistic interactions with GA, CK, PAs, JA, SA, and BR while exhibiting synergistic and antagonistic regulation with Aux, ETH, and ABA. Also, this review establishes the framework for developing novel MEL-based strategies to enhance agricultural sustainability in the face of increasingly severe environmental conditions.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin: Discovery, biosynthesis, phytohormones crosstalk, and roles in agricultural crops under abiotic stress conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Melatonin (MEL) has recently received ample attention as a potential biostimulator in agriculture. MEL has been considered a feasible and effective approach for improving crop output and resilience to various abiotic factors. The first step of MEL biosynthesis in plants is tryptophan (an amino acid), made <em>de novo</em> via the shikimic acid pathway. The processes involved in MEL biosynthesis and plant regulation are described in this review, providing a foundation for understanding the hormone's numerous physiological actions. The research delves into the intricate relationships between MEL and abiotic stresses, such as exposure to drought, salt, heat, cold, and heavy metals. This review provides an overview of recent research on the potential roles of MEL on seed germination, growth, and development in plants, highlighting its benefits for improving crop yield and quality and mitigating the detrimental effects of several abiotic stresses. It also discusses the current understanding of MEL's role as a biostimulator in agriculture, promoting root development, flowering, fruit ripening, and preventing leaf senescence. Furthermore, it summarizes the interplay of MEL with various phytohormones, including cytokinin (CK), auxin (Aux), ethylene (ETH), gibberellic acid (GA), salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), polyamines (PAs), brassinosteroid (BR), and signalling molecules such as NO, H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>S, and Ca<sup>2+</sup>. MEL shows synergistic interactions with GA, CK, PAs, JA, SA, and BR while exhibiting synergistic and antagonistic regulation with Aux, ETH, and ABA. Also, this review establishes the framework for developing novel MEL-based strategies to enhance agricultural sustainability in the face of increasingly severe environmental conditions.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003009\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Melatonin: Discovery, biosynthesis, phytohormones crosstalk, and roles in agricultural crops under abiotic stress conditions
Melatonin (MEL) has recently received ample attention as a potential biostimulator in agriculture. MEL has been considered a feasible and effective approach for improving crop output and resilience to various abiotic factors. The first step of MEL biosynthesis in plants is tryptophan (an amino acid), made de novo via the shikimic acid pathway. The processes involved in MEL biosynthesis and plant regulation are described in this review, providing a foundation for understanding the hormone's numerous physiological actions. The research delves into the intricate relationships between MEL and abiotic stresses, such as exposure to drought, salt, heat, cold, and heavy metals. This review provides an overview of recent research on the potential roles of MEL on seed germination, growth, and development in plants, highlighting its benefits for improving crop yield and quality and mitigating the detrimental effects of several abiotic stresses. It also discusses the current understanding of MEL's role as a biostimulator in agriculture, promoting root development, flowering, fruit ripening, and preventing leaf senescence. Furthermore, it summarizes the interplay of MEL with various phytohormones, including cytokinin (CK), auxin (Aux), ethylene (ETH), gibberellic acid (GA), salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), polyamines (PAs), brassinosteroid (BR), and signalling molecules such as NO, H2O2, H2S, and Ca2+. MEL shows synergistic interactions with GA, CK, PAs, JA, SA, and BR while exhibiting synergistic and antagonistic regulation with Aux, ETH, and ABA. Also, this review establishes the framework for developing novel MEL-based strategies to enhance agricultural sustainability in the face of increasingly severe environmental conditions.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.