用于锌-空气电池的 N 掺杂石墨烯支撑镍/钴双金属催化剂

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Bao Zhonghua, Junwei Li, Jingping Zhang, Qianqian Zhang, Jinying Li, Fei Yang, Shengxu Luo
{"title":"用于锌-空气电池的 N 掺杂石墨烯支撑镍/钴双金属催化剂","authors":"Bao Zhonghua,&nbsp;Junwei Li,&nbsp;Jingping Zhang,&nbsp;Qianqian Zhang,&nbsp;Jinying Li,&nbsp;Fei Yang,&nbsp;Shengxu Luo","doi":"10.1016/j.micromeso.2024.113292","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalysis is essential for enhancing the energy conversion efficiency of zinc–air batteries. Nonetheless, the high cost and insufficient stability of electrocatalysts continue to hinder their commercial application. This study introduces a bifunctional composite electrocatalyst, NiCo–NG, consisting of Ni/Co bimetallic nanoparticles. The in situ integration of nanoscale graphene mitigates the agglomeration of Ni/Co metal atoms, resulting in a porous structure with a high specific surface area up to 244.6 m<sup>2</sup> g<sup>−1</sup>. Notably, the NiCo–NG catalyst demonstrates enhanced conductivity, achieving an oxygen reduction reaction (ORR) half-wave potential of 0.793 V and a limiting current density of 7.64 mA cm<sup>−2</sup>. This catalyst exhibits superior performance to commercial Pt/C electrodes, which exhibit a half-wave potential of 0.836 V and a limiting current density of 0.6 mA cm<sup>−2</sup>. Moreover, the overpotential for the oxygen evolution reaction (OER) at a current density of 10 mA cm<sup>−2</sup> is only 306.3 mV. The introduction of Ni significantly augments the catalytic activity. Employing this dual-functional catalyst in rechargeable zinc–air batteries yields a maximum power density of 181.9 mW cm<sup>−2</sup> and a specific capacity of 804.2 mAh·g<sub>Zn</sub><sup>−1</sup>. In addition, the fabricated battery demonstrates remarkable stability, enduring up to 3000 charge–discharge cycles. Ultimately, this research offers a novel electrocatalyst that could advance the commercialization of zinc–air batteries.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113292"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-doped-graphene-supported Ni/Co bimetallic catalysts for zinc-air batteries\",\"authors\":\"Bao Zhonghua,&nbsp;Junwei Li,&nbsp;Jingping Zhang,&nbsp;Qianqian Zhang,&nbsp;Jinying Li,&nbsp;Fei Yang,&nbsp;Shengxu Luo\",\"doi\":\"10.1016/j.micromeso.2024.113292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrocatalysis is essential for enhancing the energy conversion efficiency of zinc–air batteries. Nonetheless, the high cost and insufficient stability of electrocatalysts continue to hinder their commercial application. This study introduces a bifunctional composite electrocatalyst, NiCo–NG, consisting of Ni/Co bimetallic nanoparticles. The in situ integration of nanoscale graphene mitigates the agglomeration of Ni/Co metal atoms, resulting in a porous structure with a high specific surface area up to 244.6 m<sup>2</sup> g<sup>−1</sup>. Notably, the NiCo–NG catalyst demonstrates enhanced conductivity, achieving an oxygen reduction reaction (ORR) half-wave potential of 0.793 V and a limiting current density of 7.64 mA cm<sup>−2</sup>. This catalyst exhibits superior performance to commercial Pt/C electrodes, which exhibit a half-wave potential of 0.836 V and a limiting current density of 0.6 mA cm<sup>−2</sup>. Moreover, the overpotential for the oxygen evolution reaction (OER) at a current density of 10 mA cm<sup>−2</sup> is only 306.3 mV. The introduction of Ni significantly augments the catalytic activity. Employing this dual-functional catalyst in rechargeable zinc–air batteries yields a maximum power density of 181.9 mW cm<sup>−2</sup> and a specific capacity of 804.2 mAh·g<sub>Zn</sub><sup>−1</sup>. In addition, the fabricated battery demonstrates remarkable stability, enduring up to 3000 charge–discharge cycles. Ultimately, this research offers a novel electrocatalyst that could advance the commercialization of zinc–air batteries.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"380 \",\"pages\":\"Article 113292\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003147\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

电催化对于提高锌-空气电池的能量转换效率至关重要。然而,电催化剂的高成本和稳定性不足仍然阻碍着其商业应用。本研究介绍了一种由 Ni/Co 双金属纳米颗粒组成的双功能复合电催化剂 NiCo-NG。纳米级石墨烯的原位集成减轻了镍/钴金属原子的团聚,从而形成了比表面积高达 244.6 m2 g-1 的多孔结构。值得注意的是,NiCo-NG 催化剂具有更强的导电性,氧还原反应(ORR)半波电位为 0.793 V,极限电流密度为 7.64 mA cm-2。这种催化剂的性能优于商用 Pt/C 电极,后者的半波电位为 0.836 V,极限电流密度为 0.6 mA cm-2。此外,在 10 mA cm-2 的电流密度下,氧进化反应(OER)的过电位仅为 306.3 mV。镍的引入大大提高了催化活性。在可充电锌-空气电池中使用这种双功能催化剂,可获得 181.9 mW cm-2 的最大功率密度和 804.2 mAh-gZn-1 的比容量。此外,所制造的电池还具有显著的稳定性,可经受 3000 次充放电循环。最终,这项研究提供了一种新型电催化剂,可推动锌-空气电池的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

N-doped-graphene-supported Ni/Co bimetallic catalysts for zinc-air batteries

N-doped-graphene-supported Ni/Co bimetallic catalysts for zinc-air batteries

Electrocatalysis is essential for enhancing the energy conversion efficiency of zinc–air batteries. Nonetheless, the high cost and insufficient stability of electrocatalysts continue to hinder their commercial application. This study introduces a bifunctional composite electrocatalyst, NiCo–NG, consisting of Ni/Co bimetallic nanoparticles. The in situ integration of nanoscale graphene mitigates the agglomeration of Ni/Co metal atoms, resulting in a porous structure with a high specific surface area up to 244.6 m2 g−1. Notably, the NiCo–NG catalyst demonstrates enhanced conductivity, achieving an oxygen reduction reaction (ORR) half-wave potential of 0.793 V and a limiting current density of 7.64 mA cm−2. This catalyst exhibits superior performance to commercial Pt/C electrodes, which exhibit a half-wave potential of 0.836 V and a limiting current density of 0.6 mA cm−2. Moreover, the overpotential for the oxygen evolution reaction (OER) at a current density of 10 mA cm−2 is only 306.3 mV. The introduction of Ni significantly augments the catalytic activity. Employing this dual-functional catalyst in rechargeable zinc–air batteries yields a maximum power density of 181.9 mW cm−2 and a specific capacity of 804.2 mAh·gZn−1. In addition, the fabricated battery demonstrates remarkable stability, enduring up to 3000 charge–discharge cycles. Ultimately, this research offers a novel electrocatalyst that could advance the commercialization of zinc–air batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信