增强粘弹性非稳态接触的粘附强度

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"增强粘弹性非稳态接触的粘附强度","authors":"","doi":"10.1016/j.jmps.2024.105826","DOIUrl":null,"url":null,"abstract":"<div><p>We present a general energy approach to study the unsteady adhesive contact of viscoelastic materials. Under the assumption of infinitely short-range adhesive interactions, we exploit the principle of virtual work to generalize Griffith’s local energy balance at contact edges to the case of a non-conservative (viscoelastic) material, subjected to a generic contact time–history. We apply the proposed energy balance criterion to study the approach–retraction motion of a rigid sphere in contact with a viscoelastic half-space. A strong interplay between adhesion and viscoelastic hysteretic losses is reported which can lead to strongly increased adhesion strength, depending on the loading history. Specifically, two different mechanisms are found to govern the increase of pull-off force during either approach–retraction cycles and approach – full relaxation – retraction tests. In the former case, hysteretic losses occurring close to the circular perimeter of the contact play a major role, significantly enhancing the energy release rate. In the latter case, instead, the pull-off enhancement mostly depends on the glassy response of the whole (bulk) material which, triggered by the fast retraction after relaxation, leads to a sort of ‘frozen’ state and results in a flat-punch-like detachment mechanism (i.e., constant contact area). In this case, the JKR theory of adhesive contact cannot be invoked to relate the observed pull-off force to the effective adhesion energy, i.e. the energy release rate <span><math><mi>G</mi></math></span>, and strongly overestimates it. Therefore, a rigorous mathematical procedure is also proposed to correctly calculate the energy release rate in viscoelastic dissipative contacts.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022509624002928/pdfft?md5=e87a1749d3fea2d9d6881a2902bd0ff8&pid=1-s2.0-S0022509624002928-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancement of adhesion strength in viscoelastic unsteady contacts\",\"authors\":\"\",\"doi\":\"10.1016/j.jmps.2024.105826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a general energy approach to study the unsteady adhesive contact of viscoelastic materials. Under the assumption of infinitely short-range adhesive interactions, we exploit the principle of virtual work to generalize Griffith’s local energy balance at contact edges to the case of a non-conservative (viscoelastic) material, subjected to a generic contact time–history. We apply the proposed energy balance criterion to study the approach–retraction motion of a rigid sphere in contact with a viscoelastic half-space. A strong interplay between adhesion and viscoelastic hysteretic losses is reported which can lead to strongly increased adhesion strength, depending on the loading history. Specifically, two different mechanisms are found to govern the increase of pull-off force during either approach–retraction cycles and approach – full relaxation – retraction tests. In the former case, hysteretic losses occurring close to the circular perimeter of the contact play a major role, significantly enhancing the energy release rate. In the latter case, instead, the pull-off enhancement mostly depends on the glassy response of the whole (bulk) material which, triggered by the fast retraction after relaxation, leads to a sort of ‘frozen’ state and results in a flat-punch-like detachment mechanism (i.e., constant contact area). In this case, the JKR theory of adhesive contact cannot be invoked to relate the observed pull-off force to the effective adhesion energy, i.e. the energy release rate <span><math><mi>G</mi></math></span>, and strongly overestimates it. Therefore, a rigorous mathematical procedure is also proposed to correctly calculate the energy release rate in viscoelastic dissipative contacts.</p></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022509624002928/pdfft?md5=e87a1749d3fea2d9d6881a2902bd0ff8&pid=1-s2.0-S0022509624002928-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624002928\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624002928","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了研究粘弹性材料非稳态粘着接触的一般能量方法。在无限短程粘合相互作用的假设下,我们利用虚功原理将格里菲斯在接触边缘的局部能量平衡推广到非守恒(粘弹性)材料的情况中,并受制于一般的接触时间历程。我们应用所提出的能量平衡准则来研究刚性球体与粘弹性半空间接触时的接近-回缩运动。报告显示,粘附和粘弹性滞后损失之间存在强烈的相互作用,这可能导致粘附强度的强烈增加,具体取决于加载历史。具体来说,在接近-回缩循环试验和接近-完全松弛-回缩试验中,发现有两种不同的机制控制着拉脱力的增加。在前一种情况下,接触圆周附近发生的滞后损失起主要作用,显著提高了能量释放率。相反,在后一种情况下,拉脱增强主要取决于整个(块状)材料的玻璃化反应,这种反应由松弛后的快速回缩引发,导致一种 "冻结 "状态,并形成类似扁平冲压的脱离机制(即恒定的接触面积)。在这种情况下,无法引用粘合接触的 JKR 理论来将观测到的拉脱力与有效粘合能量(即能量释放率 G)联系起来,而且还会严重高估它。因此,我们还提出了一个严格的数学程序,以正确计算粘弹性耗散接触中的能量释放率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of adhesion strength in viscoelastic unsteady contacts

We present a general energy approach to study the unsteady adhesive contact of viscoelastic materials. Under the assumption of infinitely short-range adhesive interactions, we exploit the principle of virtual work to generalize Griffith’s local energy balance at contact edges to the case of a non-conservative (viscoelastic) material, subjected to a generic contact time–history. We apply the proposed energy balance criterion to study the approach–retraction motion of a rigid sphere in contact with a viscoelastic half-space. A strong interplay between adhesion and viscoelastic hysteretic losses is reported which can lead to strongly increased adhesion strength, depending on the loading history. Specifically, two different mechanisms are found to govern the increase of pull-off force during either approach–retraction cycles and approach – full relaxation – retraction tests. In the former case, hysteretic losses occurring close to the circular perimeter of the contact play a major role, significantly enhancing the energy release rate. In the latter case, instead, the pull-off enhancement mostly depends on the glassy response of the whole (bulk) material which, triggered by the fast retraction after relaxation, leads to a sort of ‘frozen’ state and results in a flat-punch-like detachment mechanism (i.e., constant contact area). In this case, the JKR theory of adhesive contact cannot be invoked to relate the observed pull-off force to the effective adhesion energy, i.e. the energy release rate G, and strongly overestimates it. Therefore, a rigorous mathematical procedure is also proposed to correctly calculate the energy release rate in viscoelastic dissipative contacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信