用不同类型的非离子表面活性剂模拟石油模型乳液的稳定性研究

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"用不同类型的非离子表面活性剂模拟石油模型乳液的稳定性研究","authors":"","doi":"10.1016/j.cherd.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted experiments to mimic petroleum emulsions for application in laboratory flow circuits. The science of emulsion formulation is still quite restricted when it comes to parameters that stabilize emulsions. The challenge is even greater when formulating emulsions of low dynamic viscosity. In this work, model emulsions were prepared with different oil phases, with 0.1 and 1.0 % v/v of the surfactants Span 60, Span 80, Triton X-100, and Triton X-114, with 10 and 30 % v/v of aqueous phase. The kinetic stability of the emulsions evaluated in terms of aqueous phase separation, droplet size distribution, dynamic viscosity, and interfacial tension. The homogenization process assessed to identify the emulsification regime of the emulsions, inertial or viscous, through the calculation of the smallest vortices formed. A study of the maximum superficial flow velocity conducted to provide users with a better understanding of the emulsions produced here. The results indicate that seven emulsions can used in laboratory flow circuits. Span 80 provided better stabilization of the emulsions for over 72 hours with droplet sizes in the range of 0.2–100.0 µm. As a novelty in this work, increasing the concentration of surfactant Span 80 causes a decrease in average velocity in flow, a reduction in droplet size, and a regime of turbulent viscous emulsification in axial flow.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the stability of model emulsions mimicking petroleum with different types of non-ionic surfactants\",\"authors\":\"\",\"doi\":\"10.1016/j.cherd.2024.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study conducted experiments to mimic petroleum emulsions for application in laboratory flow circuits. The science of emulsion formulation is still quite restricted when it comes to parameters that stabilize emulsions. The challenge is even greater when formulating emulsions of low dynamic viscosity. In this work, model emulsions were prepared with different oil phases, with 0.1 and 1.0 % v/v of the surfactants Span 60, Span 80, Triton X-100, and Triton X-114, with 10 and 30 % v/v of aqueous phase. The kinetic stability of the emulsions evaluated in terms of aqueous phase separation, droplet size distribution, dynamic viscosity, and interfacial tension. The homogenization process assessed to identify the emulsification regime of the emulsions, inertial or viscous, through the calculation of the smallest vortices formed. A study of the maximum superficial flow velocity conducted to provide users with a better understanding of the emulsions produced here. The results indicate that seven emulsions can used in laboratory flow circuits. Span 80 provided better stabilization of the emulsions for over 72 hours with droplet sizes in the range of 0.2–100.0 µm. As a novelty in this work, increasing the concentration of surfactant Span 80 causes a decrease in average velocity in flow, a reduction in droplet size, and a regime of turbulent viscous emulsification in axial flow.</p></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005008\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究进行了模拟石油乳液的实验,以应用于实验室流动回路。就稳定乳液的参数而言,乳液配方的科学依据仍然十分有限。在配制低动态粘度乳液时,面临的挑战更大。在这项工作中,我们用不同的油相(表面活性剂 Span 60、Span 80、Triton X-100 和 Triton X-114 的含量分别为 0.1% 和 1.0%(体积分数))和 10%(体积分数)和 30%(体积分数)的水相制备了模型乳液。根据水相分离、液滴大小分布、动态粘度和界面张力评估了乳液的动力学稳定性。通过计算形成的最小漩涡,对均质过程进行评估,以确定乳液的乳化机制是惯性乳化还是粘性乳化。对最大表面流速进行了研究,以便用户更好地了解此处产生的乳化液。结果表明,有七种乳液可用于实验室流动回路。斯盘 80 能更好地稳定乳液超过 72 小时,液滴大小在 0.2-100.0 微米之间。这项研究的一个新发现是,增加表面活性剂 Span 80 的浓度会导致流动的平均速度降低、液滴尺寸减小以及轴向流中的湍流粘性乳化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the stability of model emulsions mimicking petroleum with different types of non-ionic surfactants

This study conducted experiments to mimic petroleum emulsions for application in laboratory flow circuits. The science of emulsion formulation is still quite restricted when it comes to parameters that stabilize emulsions. The challenge is even greater when formulating emulsions of low dynamic viscosity. In this work, model emulsions were prepared with different oil phases, with 0.1 and 1.0 % v/v of the surfactants Span 60, Span 80, Triton X-100, and Triton X-114, with 10 and 30 % v/v of aqueous phase. The kinetic stability of the emulsions evaluated in terms of aqueous phase separation, droplet size distribution, dynamic viscosity, and interfacial tension. The homogenization process assessed to identify the emulsification regime of the emulsions, inertial or viscous, through the calculation of the smallest vortices formed. A study of the maximum superficial flow velocity conducted to provide users with a better understanding of the emulsions produced here. The results indicate that seven emulsions can used in laboratory flow circuits. Span 80 provided better stabilization of the emulsions for over 72 hours with droplet sizes in the range of 0.2–100.0 µm. As a novelty in this work, increasing the concentration of surfactant Span 80 causes a decrease in average velocity in flow, a reduction in droplet size, and a regime of turbulent viscous emulsification in axial flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信