{"title":"维数为 4 的 NMDS 代码的四个新系列及其应用","authors":"Yun Ding, Yang Li, Shixin Zhu","doi":"10.1016/j.ffa.2024.102495","DOIUrl":null,"url":null,"abstract":"<div><p>For an <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> linear code <span><math><mi>C</mi></math></span>, the singleton defect of <span><math><mi>C</mi></math></span> is defined by <span><math><mi>S</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>d</mi></math></span>. When <span><math><mi>S</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, the code <span><math><mi>C</mi></math></span> is called a near maximum distance separable (NMDS) code, where <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is the dual code of <span><math><mi>C</mi></math></span>. NMDS codes have important applications in finite projective geometries, designs and secret sharing schemes. In this paper, we present four new constructions of infinite families of NMDS codes with dimension 4 and completely determine their weight enumerators. As an application, we also determine the locality of the dual codes of these NMDS codes and obtain four families of distance-optimal and dimension-optimal locally recoverable codes.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four new families of NMDS codes with dimension 4 and their applications\",\"authors\":\"Yun Ding, Yang Li, Shixin Zhu\",\"doi\":\"10.1016/j.ffa.2024.102495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> linear code <span><math><mi>C</mi></math></span>, the singleton defect of <span><math><mi>C</mi></math></span> is defined by <span><math><mi>S</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>d</mi></math></span>. When <span><math><mi>S</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, the code <span><math><mi>C</mi></math></span> is called a near maximum distance separable (NMDS) code, where <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is the dual code of <span><math><mi>C</mi></math></span>. NMDS codes have important applications in finite projective geometries, designs and secret sharing schemes. In this paper, we present four new constructions of infinite families of NMDS codes with dimension 4 and completely determine their weight enumerators. As an application, we also determine the locality of the dual codes of these NMDS codes and obtain four families of distance-optimal and dimension-optimal locally recoverable codes.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001345\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001345","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Four new families of NMDS codes with dimension 4 and their applications
For an linear code , the singleton defect of is defined by . When , the code is called a near maximum distance separable (NMDS) code, where is the dual code of . NMDS codes have important applications in finite projective geometries, designs and secret sharing schemes. In this paper, we present four new constructions of infinite families of NMDS codes with dimension 4 and completely determine their weight enumerators. As an application, we also determine the locality of the dual codes of these NMDS codes and obtain four families of distance-optimal and dimension-optimal locally recoverable codes.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.