Huaying Ren, Jingxuan Zhou, Ao Zhang, Zixi Wu, Jin Cai, Xiaoyang Fu, Jingyuan Zhou, Zhong Wan, Boxuan Zhou, Yu Huang and Xiangfeng Duan*,
{"title":"CuxBi2Se3 纳米板中两性掺杂的精确控制","authors":"Huaying Ren, Jingxuan Zhou, Ao Zhang, Zixi Wu, Jin Cai, Xiaoyang Fu, Jingyuan Zhou, Zhong Wan, Boxuan Zhou, Yu Huang and Xiangfeng Duan*, ","doi":"10.1021/prechem.4c0004610.1021/prechem.4c00046","DOIUrl":null,"url":null,"abstract":"<p >Copper-doped Bi<sub>2</sub>Se<sub>3</sub> (Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub>) is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states. However, the copper dopants in Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub> display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the Bi<sub>2</sub>Se<sub>3</sub> crystal lattice. Thus, a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance. Herein, we report a solution-based one-pot synthesis of Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub> nanoplates with systematically tunable Cu doping concentrations and doping sites. Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations. The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors, producing distinct effects on the electronic properties of the resulting materials. We further show that Cu<sub>0.18</sub>Bi<sub>2</sub>Se<sub>3</sub> exhibits superconducting behavior, which is not present in Bi<sub>2</sub>Se<sub>3</sub>, highlighting the essential role of Cu doping in tailoring exotic quantum properties. This study establishes an efficient methodology for precise synthesis of Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub> with tailored doping concentrations, doping sites, and electronic properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 8","pages":"421–427 421–427"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00046","citationCount":"0","resultStr":"{\"title\":\"Precision Control of Amphoteric Doping in CuxBi2Se3 Nanoplates\",\"authors\":\"Huaying Ren, Jingxuan Zhou, Ao Zhang, Zixi Wu, Jin Cai, Xiaoyang Fu, Jingyuan Zhou, Zhong Wan, Boxuan Zhou, Yu Huang and Xiangfeng Duan*, \",\"doi\":\"10.1021/prechem.4c0004610.1021/prechem.4c00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Copper-doped Bi<sub>2</sub>Se<sub>3</sub> (Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub>) is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states. However, the copper dopants in Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub> display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the Bi<sub>2</sub>Se<sub>3</sub> crystal lattice. Thus, a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance. Herein, we report a solution-based one-pot synthesis of Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub> nanoplates with systematically tunable Cu doping concentrations and doping sites. Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations. The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors, producing distinct effects on the electronic properties of the resulting materials. We further show that Cu<sub>0.18</sub>Bi<sub>2</sub>Se<sub>3</sub> exhibits superconducting behavior, which is not present in Bi<sub>2</sub>Se<sub>3</sub>, highlighting the essential role of Cu doping in tailoring exotic quantum properties. This study establishes an efficient methodology for precise synthesis of Cu<sub><i>x</i></sub>Bi<sub>2</sub>Se<sub>3</sub> with tailored doping concentrations, doping sites, and electronic properties.</p>\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":\"2 8\",\"pages\":\"421–427 421–427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/prechem.4c00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.4c00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precision Control of Amphoteric Doping in CuxBi2Se3 Nanoplates
Copper-doped Bi2Se3 (CuxBi2Se3) is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states. However, the copper dopants in CuxBi2Se3 display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the Bi2Se3 crystal lattice. Thus, a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance. Herein, we report a solution-based one-pot synthesis of CuxBi2Se3 nanoplates with systematically tunable Cu doping concentrations and doping sites. Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations. The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors, producing distinct effects on the electronic properties of the resulting materials. We further show that Cu0.18Bi2Se3 exhibits superconducting behavior, which is not present in Bi2Se3, highlighting the essential role of Cu doping in tailoring exotic quantum properties. This study establishes an efficient methodology for precise synthesis of CuxBi2Se3 with tailored doping concentrations, doping sites, and electronic properties.
期刊介绍:
Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.