揭示 Cu/γ-Al2O3 催化剂等离子体催化低温水气变换反应的机理

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoqiang Shen, Michael Craven, Jiacheng Xu, Yaolin Wang, Zhi Li, Weitao Wang, Shuiliang Yao, Zuliang Wu, Nan Jiang, Xuanbo Zhou, Kuan Sun, Xuesen Du* and Xin Tu*, 
{"title":"揭示 Cu/γ-Al2O3 催化剂等离子体催化低温水气变换反应的机理","authors":"Xiaoqiang Shen,&nbsp;Michael Craven,&nbsp;Jiacheng Xu,&nbsp;Yaolin Wang,&nbsp;Zhi Li,&nbsp;Weitao Wang,&nbsp;Shuiliang Yao,&nbsp;Zuliang Wu,&nbsp;Nan Jiang,&nbsp;Xuanbo Zhou,&nbsp;Kuan Sun,&nbsp;Xuesen Du* and Xin Tu*,&nbsp;","doi":"10.1021/jacsau.4c0051810.1021/jacsau.4c00518","DOIUrl":null,"url":null,"abstract":"<p >The water–gas shift (WGS) reaction is a crucial process for hydrogen production. Unfortunately, achieving high reaction rates and yields for the WGS reaction at low temperatures remains a challenge due to kinetic limitations. Here, nonthermal plasma coupled to Cu/γ-Al<sub>2</sub>O<sub>3</sub> catalysts was employed to enable the WGS reaction at considerably lower temperatures (up to 140 °C). For comparison, thermal-catalytic WGS reactions using the same catalysts were conducted at 140–300 °C. The best performance (72.1% CO conversion and 67.4% H<sub>2</sub> yield) was achieved using an 8 wt % Cu/γ-Al<sub>2</sub>O<sub>3</sub> catalyst in plasma catalysis at ∼140 °C, with 8.74 MJ mol<sup>–1</sup> energy consumption and 8.5% H<sub>2</sub> fuel production efficiency. Notably, conventional thermal catalysis proved to be ineffective at such low temperatures. Density functional theory calculations, coupled with <i>in situ</i> diffuse reflectance infrared Fourier transform spectroscopy, revealed that the plasma-generated OH radicals significantly enhanced the WGS reaction by influencing both the redox and carboxyl reaction pathways.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00518","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Mechanism of Plasma-Catalytic Low-Temperature Water–Gas Shift Reaction over Cu/γ-Al2O3 Catalysts\",\"authors\":\"Xiaoqiang Shen,&nbsp;Michael Craven,&nbsp;Jiacheng Xu,&nbsp;Yaolin Wang,&nbsp;Zhi Li,&nbsp;Weitao Wang,&nbsp;Shuiliang Yao,&nbsp;Zuliang Wu,&nbsp;Nan Jiang,&nbsp;Xuanbo Zhou,&nbsp;Kuan Sun,&nbsp;Xuesen Du* and Xin Tu*,&nbsp;\",\"doi\":\"10.1021/jacsau.4c0051810.1021/jacsau.4c00518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The water–gas shift (WGS) reaction is a crucial process for hydrogen production. Unfortunately, achieving high reaction rates and yields for the WGS reaction at low temperatures remains a challenge due to kinetic limitations. Here, nonthermal plasma coupled to Cu/γ-Al<sub>2</sub>O<sub>3</sub> catalysts was employed to enable the WGS reaction at considerably lower temperatures (up to 140 °C). For comparison, thermal-catalytic WGS reactions using the same catalysts were conducted at 140–300 °C. The best performance (72.1% CO conversion and 67.4% H<sub>2</sub> yield) was achieved using an 8 wt % Cu/γ-Al<sub>2</sub>O<sub>3</sub> catalyst in plasma catalysis at ∼140 °C, with 8.74 MJ mol<sup>–1</sup> energy consumption and 8.5% H<sub>2</sub> fuel production efficiency. Notably, conventional thermal catalysis proved to be ineffective at such low temperatures. Density functional theory calculations, coupled with <i>in situ</i> diffuse reflectance infrared Fourier transform spectroscopy, revealed that the plasma-generated OH radicals significantly enhanced the WGS reaction by influencing both the redox and carboxyl reaction pathways.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00518\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c00518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水气变换(WGS)反应是制氢的关键过程。遗憾的是,由于动力学方面的限制,在低温条件下实现 WGS 反应的高反应速率和高产率仍然是一项挑战。在此,我们采用了与 Cu/γ-Al2O3 催化剂耦合的非热等离子体,使 WGS 反应能在相当低的温度下进行(最高可达 140 °C)。为了进行比较,使用相同催化剂的热催化 WGS 反应在 140-300 ℃ 下进行。在 140 °C以下的等离子催化条件下,使用 8 wt % Cu/γ-Al2O3 催化剂实现了最佳性能(72.1% 的 CO 转化率和 67.4% 的 H2 产率),能耗为 8.74 MJ mol-1,H2 燃料生产效率为 8.5%。值得注意的是,传统的热催化在如此低的温度下被证明是无效的。密度泛函理论计算以及原位漫反射红外傅立叶变换光谱显示,等离子体产生的羟基自由基通过影响氧化还原和羧基反应途径显著增强了 WGS 反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Mechanism of Plasma-Catalytic Low-Temperature Water–Gas Shift Reaction over Cu/γ-Al2O3 Catalysts

Unveiling the Mechanism of Plasma-Catalytic Low-Temperature Water–Gas Shift Reaction over Cu/γ-Al2O3 Catalysts

The water–gas shift (WGS) reaction is a crucial process for hydrogen production. Unfortunately, achieving high reaction rates and yields for the WGS reaction at low temperatures remains a challenge due to kinetic limitations. Here, nonthermal plasma coupled to Cu/γ-Al2O3 catalysts was employed to enable the WGS reaction at considerably lower temperatures (up to 140 °C). For comparison, thermal-catalytic WGS reactions using the same catalysts were conducted at 140–300 °C. The best performance (72.1% CO conversion and 67.4% H2 yield) was achieved using an 8 wt % Cu/γ-Al2O3 catalyst in plasma catalysis at ∼140 °C, with 8.74 MJ mol–1 energy consumption and 8.5% H2 fuel production efficiency. Notably, conventional thermal catalysis proved to be ineffective at such low temperatures. Density functional theory calculations, coupled with in situ diffuse reflectance infrared Fourier transform spectroscopy, revealed that the plasma-generated OH radicals significantly enhanced the WGS reaction by influencing both the redox and carboxyl reaction pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信