Pulkit Parikh, Julia Penfield, Richard Barker, Blake McGowan, James Richard Mallon
{"title":"基于 NLP 的人体工程学 MSD 风险根源分析和风险控制建议。","authors":"Pulkit Parikh, Julia Penfield, Richard Barker, Blake McGowan, James Richard Mallon","doi":"10.1080/00140139.2024.2394510","DOIUrl":null,"url":null,"abstract":"<p><p>An ergonomics assessment of the physical risk factors in the workplace is instrumental in predicting and preventing musculoskeletal disorders (MSDs). Using Artificial Intelligence (AI) has become increasingly popular for ergonomics assessments because of the time savings and improved accuracy. However, most of the effort in this area starts and ends with producing risk scores, without providing guidance to reduce the risk. This paper proposes a holistic job improvement process that performs automatic root cause analysis and control recommendations for reducing MSD risk. We apply deep learning-based Natural Language Processing (NLP) techniques such as Part of Speech (PoS) tagging and dependency parsing on textual descriptions of the physical actions performed in the job (e.g. pushing) along with the object (e.g. cart) being acted upon. The action-object inferences provide the entry point to an expert-based Machine Learning (ML) system that automatically identifies the targeted work-related causes (e.g. cart movement forces are too high, due to caster size too small) of the identified MSD risk (e.g. excessive shoulder forces). The proposed framework utilises the root causes identified to recommend control strategies (e.g. provide larger diameter casters, minimum diameter 8\" or 203 mm) most likely to mitigate risk, resulting in a more efficient and effective job improvement process.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NLP-based ergonomics MSD risk root cause analysis and risk controls recommendation.\",\"authors\":\"Pulkit Parikh, Julia Penfield, Richard Barker, Blake McGowan, James Richard Mallon\",\"doi\":\"10.1080/00140139.2024.2394510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An ergonomics assessment of the physical risk factors in the workplace is instrumental in predicting and preventing musculoskeletal disorders (MSDs). Using Artificial Intelligence (AI) has become increasingly popular for ergonomics assessments because of the time savings and improved accuracy. However, most of the effort in this area starts and ends with producing risk scores, without providing guidance to reduce the risk. This paper proposes a holistic job improvement process that performs automatic root cause analysis and control recommendations for reducing MSD risk. We apply deep learning-based Natural Language Processing (NLP) techniques such as Part of Speech (PoS) tagging and dependency parsing on textual descriptions of the physical actions performed in the job (e.g. pushing) along with the object (e.g. cart) being acted upon. The action-object inferences provide the entry point to an expert-based Machine Learning (ML) system that automatically identifies the targeted work-related causes (e.g. cart movement forces are too high, due to caster size too small) of the identified MSD risk (e.g. excessive shoulder forces). The proposed framework utilises the root causes identified to recommend control strategies (e.g. provide larger diameter casters, minimum diameter 8\\\" or 203 mm) most likely to mitigate risk, resulting in a more efficient and effective job improvement process.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2394510\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2394510","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
NLP-based ergonomics MSD risk root cause analysis and risk controls recommendation.
An ergonomics assessment of the physical risk factors in the workplace is instrumental in predicting and preventing musculoskeletal disorders (MSDs). Using Artificial Intelligence (AI) has become increasingly popular for ergonomics assessments because of the time savings and improved accuracy. However, most of the effort in this area starts and ends with producing risk scores, without providing guidance to reduce the risk. This paper proposes a holistic job improvement process that performs automatic root cause analysis and control recommendations for reducing MSD risk. We apply deep learning-based Natural Language Processing (NLP) techniques such as Part of Speech (PoS) tagging and dependency parsing on textual descriptions of the physical actions performed in the job (e.g. pushing) along with the object (e.g. cart) being acted upon. The action-object inferences provide the entry point to an expert-based Machine Learning (ML) system that automatically identifies the targeted work-related causes (e.g. cart movement forces are too high, due to caster size too small) of the identified MSD risk (e.g. excessive shoulder forces). The proposed framework utilises the root causes identified to recommend control strategies (e.g. provide larger diameter casters, minimum diameter 8" or 203 mm) most likely to mitigate risk, resulting in a more efficient and effective job improvement process.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.