多种内在时间尺度支配着人类睡眠中不同的大脑状态。

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Janna D Lendner, Jack J Lin, Pål G Larsson, Randolph F Helfrich
{"title":"多种内在时间尺度支配着人类睡眠中不同的大脑状态。","authors":"Janna D Lendner, Jack J Lin, Pål G Larsson, Randolph F Helfrich","doi":"10.1523/JNEUROSCI.0171-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope <i>χ</i> of the 1/frequency (1/f<sup>χ</sup>) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484545/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep.\",\"authors\":\"Janna D Lendner, Jack J Lin, Pål G Larsson, Randolph F Helfrich\",\"doi\":\"10.1523/JNEUROSCI.0171-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope <i>χ</i> of the 1/frequency (1/f<sup>χ</sup>) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0171-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0171-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类睡眠表现出多种反复出现的时间规律性,包括昼夜节律、睡眠阶段周期以及非快速眼动(非快速眼动)睡眠期间的神经元振荡。此外,最近的证据显示,非周期性活动具有功能性作用,能可靠地区分不同的睡眠阶段。非周期性活动通常被定义为电生理功率谱的1/频率(1/fχ)衰减函数的谱斜率χ。然而,现在的一些研究表明,功率谱的非周期性分量可以更好地由具有相关时间尺度的多个衰变过程叠加来表征。在此,我们利用人类颅内脑电图(iEEG)确定了共同形成非周期性活动的多个时标。在三项独立研究(47 名参与者,23 名女性)中,我们的结果显示,非周期性活动以区域特异性的方式可靠地分离了睡眠阶段依赖性动态。对非周期性活动进行参数化的原则性方法划定了几个特定空间和状态的时标。最后,我们采用异丙酚麻醉的药理调控方法,将可能反映潜在神经群物理特性的状态不变时标与可能构成功能相互作用的特定状态时标区分开来。总之,这些结果证实了存在多种内在时标,它们定义了不同大脑状态下的电生理功率谱。 重要声明 睡眠具有显著的时间规律性。在这项研究中,我们揭示了一个以前未曾认识到的原理,它支配着人类睡眠期间的神经活动。我们的研究结果揭示了一组内在的时间尺度,它们从根本上定义了睡眠大脑的当前状态。这些时标可作为底层神经群内生理和功能相互作用的指标。通过药理学调控,我们将特定状态的功能性相互作用与状态不变的时标区分开来,这表明后者可能反映了神经群的固有物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep.

Human sleep exhibits multiple, recurrent temporal regularities, ranging from circadian rhythms to sleep stage cycles and neuronal oscillations during nonrapid eye movement sleep. Moreover, recent evidence revealed a functional role of aperiodic activity, which reliably discriminates different sleep stages. Aperiodic activity is commonly defined as the spectral slope χ of the 1/frequency (1/fχ) decay function of the electrophysiological power spectrum. However, several lines of inquiry now indicate that the aperiodic component of the power spectrum might be better characterized by a superposition of several decay processes with associated timescales. Here, we determined multiple timescales, which jointly shape aperiodic activity using human intracranial electroencephalography. Across three independent studies (47 participants, 23 female), our results reveal that aperiodic activity reliably dissociated sleep stage-dependent dynamics in a regionally specific manner. A principled approach to parametrize aperiodic activity delineated several, spatially and state-specific timescales. Lastly, we employed pharmacological modulation by means of propofol anesthesia to disentangle state-invariant timescales that may reflect physical properties of the underlying neural population from state-specific timescales that likely constitute functional interactions. Collectively, these results establish the presence of multiple intrinsic timescales that define the electrophysiological power spectrum during distinct brain states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信