{"title":"利用语音心电图、迁移学习和可解释人工智能快速检测和解释心脏杂音。","authors":"Fatma Özcan","doi":"10.1007/s13755-024-00302-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease, which remains one of the main causes of death, can be prevented by early diagnosis of heart sounds. Certain noisy signals, known as murmurs, may be present in heart sounds. On auscultation, the degree of murmur is closely related to the patient's clinical condition. Computer-aided decision-making systems can help doctors to detect murmurs and make faster decisions. The Mel spectrograms were generated from raw phonocardiograms and then presented to the OpenL3 network for transfer learning. In this way, the signals were classified to predict the presence or absence of murmurs and their level of severity. Pitch level (healthy, low, medium, high) and Levine scale (healthy, soft, loud) were used. The results obtained without prior segmentation are very impressive. The model used was then interpreted using an Explainable Artificial Intelligence (XAI) method, Occlusion Sensitivity. This approach shows that XAI methods are necessary to know the features used internally by the artificial neural network then to explain the automatic decision taken by the model. The averaged image of the occlusion sensitivity maps can give us either an overview or a precise detail per pixel of the features used. In the field of healthcare, particularly cardiology, for rapid diagnostic and preventive purposes, this work could provide more detail on the important features of the phonocardiogram.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"43"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid detection and interpretation of heart murmurs using phonocardiograms, transfer learning and explainable artificial intelligence.\",\"authors\":\"Fatma Özcan\",\"doi\":\"10.1007/s13755-024-00302-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease, which remains one of the main causes of death, can be prevented by early diagnosis of heart sounds. Certain noisy signals, known as murmurs, may be present in heart sounds. On auscultation, the degree of murmur is closely related to the patient's clinical condition. Computer-aided decision-making systems can help doctors to detect murmurs and make faster decisions. The Mel spectrograms were generated from raw phonocardiograms and then presented to the OpenL3 network for transfer learning. In this way, the signals were classified to predict the presence or absence of murmurs and their level of severity. Pitch level (healthy, low, medium, high) and Levine scale (healthy, soft, loud) were used. The results obtained without prior segmentation are very impressive. The model used was then interpreted using an Explainable Artificial Intelligence (XAI) method, Occlusion Sensitivity. This approach shows that XAI methods are necessary to know the features used internally by the artificial neural network then to explain the automatic decision taken by the model. The averaged image of the occlusion sensitivity maps can give us either an overview or a precise detail per pixel of the features used. In the field of healthcare, particularly cardiology, for rapid diagnostic and preventive purposes, this work could provide more detail on the important features of the phonocardiogram.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"12 1\",\"pages\":\"43\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-024-00302-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00302-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Rapid detection and interpretation of heart murmurs using phonocardiograms, transfer learning and explainable artificial intelligence.
Cardiovascular disease, which remains one of the main causes of death, can be prevented by early diagnosis of heart sounds. Certain noisy signals, known as murmurs, may be present in heart sounds. On auscultation, the degree of murmur is closely related to the patient's clinical condition. Computer-aided decision-making systems can help doctors to detect murmurs and make faster decisions. The Mel spectrograms were generated from raw phonocardiograms and then presented to the OpenL3 network for transfer learning. In this way, the signals were classified to predict the presence or absence of murmurs and their level of severity. Pitch level (healthy, low, medium, high) and Levine scale (healthy, soft, loud) were used. The results obtained without prior segmentation are very impressive. The model used was then interpreted using an Explainable Artificial Intelligence (XAI) method, Occlusion Sensitivity. This approach shows that XAI methods are necessary to know the features used internally by the artificial neural network then to explain the automatic decision taken by the model. The averaged image of the occlusion sensitivity maps can give us either an overview or a precise detail per pixel of the features used. In the field of healthcare, particularly cardiology, for rapid diagnostic and preventive purposes, this work could provide more detail on the important features of the phonocardiogram.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.