{"title":"真菌介导合成用于降解偶氮染料的生物钯催化剂。","authors":"Shraddha Gupta, Anirudh Sharma, Ashma Sharma, Jasdeep Singh","doi":"10.1007/s11274-024-04117-5","DOIUrl":null,"url":null,"abstract":"<p><p>Dyes are the coloured substances that are applied on different substrates such as textiles, leather and paper products, etc. Azo dyes release from the industries are toxic and recalcitrant wastewater pollutants, therefore it is necessary to degrade these pollutants from water. In this study, the palladium (0) nanoparticles (PdNPs) were generated through the biological process and exhibited for the catalytic degradation of azo dye. The palladium nanoparticles (PdNPs) were synthesized by using the cell-free approach i.e. extract of fungal strain Rhizopus sp. (SG-01), which significantly degrade the azo dye (methyl orange). The amount of catalyst was optimized by varying the concentration of PdNPs (1 mg/mL to 4 mg/mL) for 10 mL of 50 ppm methyl orange (MO) dye separately. The time dependent study demonstrates the biogenic PdNPs could effectively degrade the methyl orange dye up to 98.7% with minimum concentration (3 mg/mL) of PdNPs within 24 h of reaction. The long-term stability and effective catalytic potential up to five repeated cycles of biogenic PdNPs have good significance for acceleration the degradation of azo dyes. Thus, the use of biogenic palladium nanoparticles for dye degradation as outlined in the present study can provide an alternative and economical method for the synthesis of PdNPs as well as degradation of azo dyes present in wastewater and is helpful to efficiently remediate textile effluent.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 10","pages":"310"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungus mediated synthesis of biogenic palladium catalyst for degradation of azo dye.\",\"authors\":\"Shraddha Gupta, Anirudh Sharma, Ashma Sharma, Jasdeep Singh\",\"doi\":\"10.1007/s11274-024-04117-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dyes are the coloured substances that are applied on different substrates such as textiles, leather and paper products, etc. Azo dyes release from the industries are toxic and recalcitrant wastewater pollutants, therefore it is necessary to degrade these pollutants from water. In this study, the palladium (0) nanoparticles (PdNPs) were generated through the biological process and exhibited for the catalytic degradation of azo dye. The palladium nanoparticles (PdNPs) were synthesized by using the cell-free approach i.e. extract of fungal strain Rhizopus sp. (SG-01), which significantly degrade the azo dye (methyl orange). The amount of catalyst was optimized by varying the concentration of PdNPs (1 mg/mL to 4 mg/mL) for 10 mL of 50 ppm methyl orange (MO) dye separately. The time dependent study demonstrates the biogenic PdNPs could effectively degrade the methyl orange dye up to 98.7% with minimum concentration (3 mg/mL) of PdNPs within 24 h of reaction. The long-term stability and effective catalytic potential up to five repeated cycles of biogenic PdNPs have good significance for acceleration the degradation of azo dyes. Thus, the use of biogenic palladium nanoparticles for dye degradation as outlined in the present study can provide an alternative and economical method for the synthesis of PdNPs as well as degradation of azo dyes present in wastewater and is helpful to efficiently remediate textile effluent.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 10\",\"pages\":\"310\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04117-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04117-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Fungus mediated synthesis of biogenic palladium catalyst for degradation of azo dye.
Dyes are the coloured substances that are applied on different substrates such as textiles, leather and paper products, etc. Azo dyes release from the industries are toxic and recalcitrant wastewater pollutants, therefore it is necessary to degrade these pollutants from water. In this study, the palladium (0) nanoparticles (PdNPs) were generated through the biological process and exhibited for the catalytic degradation of azo dye. The palladium nanoparticles (PdNPs) were synthesized by using the cell-free approach i.e. extract of fungal strain Rhizopus sp. (SG-01), which significantly degrade the azo dye (methyl orange). The amount of catalyst was optimized by varying the concentration of PdNPs (1 mg/mL to 4 mg/mL) for 10 mL of 50 ppm methyl orange (MO) dye separately. The time dependent study demonstrates the biogenic PdNPs could effectively degrade the methyl orange dye up to 98.7% with minimum concentration (3 mg/mL) of PdNPs within 24 h of reaction. The long-term stability and effective catalytic potential up to five repeated cycles of biogenic PdNPs have good significance for acceleration the degradation of azo dyes. Thus, the use of biogenic palladium nanoparticles for dye degradation as outlined in the present study can provide an alternative and economical method for the synthesis of PdNPs as well as degradation of azo dyes present in wastewater and is helpful to efficiently remediate textile effluent.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.