噪声信号中周期性检测的生成模型

IF 2.1 Q3 CLINICAL NEUROLOGY
Ezekiel Barnett, Olga Kaiser, Jonathan Masci, Ernst C Wit, Stephany Fulda
{"title":"噪声信号中周期性检测的生成模型","authors":"Ezekiel Barnett, Olga Kaiser, Jonathan Masci, Ernst C Wit, Stephany Fulda","doi":"10.3390/clockssleep6030025","DOIUrl":null,"url":null,"abstract":"<p><p>We present the Gaussian Mixture Periodicity Detection Algorithm (GMPDA), a novel method for detecting periodicity in the binary time series of event onsets. The GMPDA addresses the periodicity detection problem by inferring parameters of a generative model. We introduce two models, the Clock Model and the Random Walk Model, which describe distinct periodic phenomena and provide a comprehensive generative framework. The GMPDA demonstrates robust performance in test cases involving single and multiple periodicities, as well as varying noise levels. Additionally, we evaluate the GMPDA on real-world data from recorded leg movements during sleep, where it successfully identifies expected periodicities despite high noise levels. The primary contributions of this paper include the development of two new models for generating periodic event behavior and the GMPDA, which exhibits high accuracy in detecting multiple periodicities even in noisy environments.</p>","PeriodicalId":33568,"journal":{"name":"Clocks & Sleep","volume":"6 3","pages":"359-388"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348253/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative Models for Periodicity Detection in Noisy Signals.\",\"authors\":\"Ezekiel Barnett, Olga Kaiser, Jonathan Masci, Ernst C Wit, Stephany Fulda\",\"doi\":\"10.3390/clockssleep6030025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present the Gaussian Mixture Periodicity Detection Algorithm (GMPDA), a novel method for detecting periodicity in the binary time series of event onsets. The GMPDA addresses the periodicity detection problem by inferring parameters of a generative model. We introduce two models, the Clock Model and the Random Walk Model, which describe distinct periodic phenomena and provide a comprehensive generative framework. The GMPDA demonstrates robust performance in test cases involving single and multiple periodicities, as well as varying noise levels. Additionally, we evaluate the GMPDA on real-world data from recorded leg movements during sleep, where it successfully identifies expected periodicities despite high noise levels. The primary contributions of this paper include the development of two new models for generating periodic event behavior and the GMPDA, which exhibits high accuracy in detecting multiple periodicities even in noisy environments.</p>\",\"PeriodicalId\":33568,\"journal\":{\"name\":\"Clocks & Sleep\",\"volume\":\"6 3\",\"pages\":\"359-388\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348253/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clocks & Sleep\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/clockssleep6030025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clocks & Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/clockssleep6030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了高斯混杂周期性检测算法(GMPDA),这是一种在事件发生的二进制时间序列中检测周期性的新方法。GMPDA 通过推断生成模型的参数来解决周期性检测问题。我们引入了两个模型,即时钟模型和随机漫步模型,这两个模型描述了不同的周期性现象,并提供了一个全面的生成框架。GMPDA 在涉及单周期性和多周期性以及不同噪声水平的测试案例中表现出稳健的性能。此外,我们还在睡眠过程中记录的腿部运动的真实数据上对 GMPDA 进行了评估,尽管噪音水平很高,但 GMPDA 仍能成功识别出预期的周期性现象。本文的主要贡献包括开发了两个用于生成周期性事件行为的新模型和 GMPDA,即使在噪声环境中,GMPDA 也能高精度地检测出多个周期性事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Models for Periodicity Detection in Noisy Signals.

We present the Gaussian Mixture Periodicity Detection Algorithm (GMPDA), a novel method for detecting periodicity in the binary time series of event onsets. The GMPDA addresses the periodicity detection problem by inferring parameters of a generative model. We introduce two models, the Clock Model and the Random Walk Model, which describe distinct periodic phenomena and provide a comprehensive generative framework. The GMPDA demonstrates robust performance in test cases involving single and multiple periodicities, as well as varying noise levels. Additionally, we evaluate the GMPDA on real-world data from recorded leg movements during sleep, where it successfully identifies expected periodicities despite high noise levels. The primary contributions of this paper include the development of two new models for generating periodic event behavior and the GMPDA, which exhibits high accuracy in detecting multiple periodicities even in noisy environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clocks & Sleep
Clocks & Sleep Multiple-
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信