{"title":"具有噻唑连接的刚性共价有机框架可促进光催化水净化中的氧活化。","authors":"Yanghui Hou, Peng Zhou, Fuyang Liu, Ke Tong, Yanyu Lu, Zhengmao Li, Jialiang Liang, Meiping Tong","doi":"10.1038/s41467-024-51878-6","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O<sub>2</sub>-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L<sup>-1</sup> paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"7350"},"PeriodicalIF":14.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification.\",\"authors\":\"Yanghui Hou, Peng Zhou, Fuyang Liu, Ke Tong, Yanyu Lu, Zhengmao Li, Jialiang Liang, Meiping Tong\",\"doi\":\"10.1038/s41467-024-51878-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O<sub>2</sub>-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L<sup>-1</sup> paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"7350\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51878-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51878-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification.
Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O2-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L-1 paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.