具有噻唑连接的刚性共价有机框架可促进光催化水净化中的氧活化。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yanghui Hou, Peng Zhou, Fuyang Liu, Ke Tong, Yanyu Lu, Zhengmao Li, Jialiang Liang, Meiping Tong
{"title":"具有噻唑连接的刚性共价有机框架可促进光催化水净化中的氧活化。","authors":"Yanghui Hou, Peng Zhou, Fuyang Liu, Ke Tong, Yanyu Lu, Zhengmao Li, Jialiang Liang, Meiping Tong","doi":"10.1038/s41467-024-51878-6","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O<sub>2</sub>-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L<sup>-1</sup> paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"7350"},"PeriodicalIF":14.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification.\",\"authors\":\"Yanghui Hou, Peng Zhou, Fuyang Liu, Ke Tong, Yanyu Lu, Zhengmao Li, Jialiang Liang, Meiping Tong\",\"doi\":\"10.1038/s41467-024-51878-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O<sub>2</sub>-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L<sup>-1</sup> paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"7350\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51878-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51878-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于共价有机框架(COFs)能够在太阳照射下产生活性氧(ROS),其可预先设计的结构和独特的架构在水净化方面显示出巨大的潜力。然而,COFs 的电荷分离迟缓、氧活化效率低和结构稳定性差等问题限制了其在净化水方面的实际应用。在此,我们通过简单的一锅合成策略,证明了将可逆的亚胺连接直接转化为刚性的噻唑连接,可以调整骨架的π-共轭和局部电荷极化,从而促进 COFs 上激子的解离。刚性连接还能提高骨架的稳健性和 COFs 在连续利用过程中的稳定性。更重要的是,具有最佳 C 2p 态(COF-S)的 COF 中的噻唑连接能有效提高邻苯单元的活性,从而直接调节 O2- 吸附能垒,提高 ROS 生成效率,从而实现对七种有毒新污染物的出色光催化降解效率(例如,仅在 7 分钟内就能降解 5 mg L-1 扑热息痛的约 99%)和有效的细菌/藻类灭活性能。此外,COF-S 还可固定在连续流反应器和放大反应器中,在自然阳光照射下有效消除污染物,证明了实际应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification.

Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O2-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L-1 paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信