大脑时钟捕捉到了不同地域人群在老龄化和痴呆症方面的多样性和差异。

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sebastian Moguilner, Sandra Baez, Hernan Hernandez, Joaquín Migeot, Agustina Legaz, Raul Gonzalez-Gomez, Francesca R Farina, Pavel Prado, Jhosmary Cuadros, Enzo Tagliazucchi, Florencia Altschuler, Marcelo Adrián Maito, María E Godoy, Josephine Cruzat, Pedro A Valdes-Sosa, Francisco Lopera, John Fredy Ochoa-Gómez, Alfredis Gonzalez Hernandez, Jasmin Bonilla-Santos, Rodrigo A Gonzalez-Montealegre, Renato Anghinah, Luís E d'Almeida Manfrinati, Sol Fittipaldi, Vicente Medel, Daniela Olivares, Görsev G Yener, Javier Escudero, Claudio Babiloni, Robert Whelan, Bahar Güntekin, Harun Yırıkoğulları, Hernando Santamaria-Garcia, Alberto Fernández Lucas, David Huepe, Gaetano Di Caterina, Marcio Soto-Añari, Agustina Birba, Agustin Sainz-Ballesteros, Carlos Coronel-Oliveros, Amanuel Yigezu, Eduar Herrera, Daniel Abasolo, Kerry Kilborn, Nicolás Rubido, Ruaridh A Clark, Ruben Herzog, Deniz Yerlikaya, Kun Hu, Mario A Parra, Pablo Reyes, Adolfo M García, Diana L Matallana, José Alberto Avila-Funes, Andrea Slachevsky, María I Behrens, Nilton Custodio, Juan F Cardona, Pablo Barttfeld, Ignacio L Brusco, Martín A Bruno, Ana L Sosa Ortiz, Stefanie D Pina-Escudero, Leonel T Takada, Elisa Resende, Katherine L Possin, Maira Okada de Oliveira, Alejandro Lopez-Valdes, Brian Lawlor, Ian H Robertson, Kenneth S Kosik, Claudia Duran-Aniotz, Victor Valcour, Jennifer S Yokoyama, Bruce Miller, Agustin Ibanez
{"title":"大脑时钟捕捉到了不同地域人群在老龄化和痴呆症方面的多样性和差异。","authors":"Sebastian Moguilner, Sandra Baez, Hernan Hernandez, Joaquín Migeot, Agustina Legaz, Raul Gonzalez-Gomez, Francesca R Farina, Pavel Prado, Jhosmary Cuadros, Enzo Tagliazucchi, Florencia Altschuler, Marcelo Adrián Maito, María E Godoy, Josephine Cruzat, Pedro A Valdes-Sosa, Francisco Lopera, John Fredy Ochoa-Gómez, Alfredis Gonzalez Hernandez, Jasmin Bonilla-Santos, Rodrigo A Gonzalez-Montealegre, Renato Anghinah, Luís E d'Almeida Manfrinati, Sol Fittipaldi, Vicente Medel, Daniela Olivares, Görsev G Yener, Javier Escudero, Claudio Babiloni, Robert Whelan, Bahar Güntekin, Harun Yırıkoğulları, Hernando Santamaria-Garcia, Alberto Fernández Lucas, David Huepe, Gaetano Di Caterina, Marcio Soto-Añari, Agustina Birba, Agustin Sainz-Ballesteros, Carlos Coronel-Oliveros, Amanuel Yigezu, Eduar Herrera, Daniel Abasolo, Kerry Kilborn, Nicolás Rubido, Ruaridh A Clark, Ruben Herzog, Deniz Yerlikaya, Kun Hu, Mario A Parra, Pablo Reyes, Adolfo M García, Diana L Matallana, José Alberto Avila-Funes, Andrea Slachevsky, María I Behrens, Nilton Custodio, Juan F Cardona, Pablo Barttfeld, Ignacio L Brusco, Martín A Bruno, Ana L Sosa Ortiz, Stefanie D Pina-Escudero, Leonel T Takada, Elisa Resende, Katherine L Possin, Maira Okada de Oliveira, Alejandro Lopez-Valdes, Brian Lawlor, Ian H Robertson, Kenneth S Kosik, Claudia Duran-Aniotz, Victor Valcour, Jennifer S Yokoyama, Bruce Miller, Agustin Ibanez","doi":"10.1038/s41591-024-03209-x","DOIUrl":null,"url":null,"abstract":"<p><p>Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":" ","pages":""},"PeriodicalIF":58.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations.\",\"authors\":\"Sebastian Moguilner, Sandra Baez, Hernan Hernandez, Joaquín Migeot, Agustina Legaz, Raul Gonzalez-Gomez, Francesca R Farina, Pavel Prado, Jhosmary Cuadros, Enzo Tagliazucchi, Florencia Altschuler, Marcelo Adrián Maito, María E Godoy, Josephine Cruzat, Pedro A Valdes-Sosa, Francisco Lopera, John Fredy Ochoa-Gómez, Alfredis Gonzalez Hernandez, Jasmin Bonilla-Santos, Rodrigo A Gonzalez-Montealegre, Renato Anghinah, Luís E d'Almeida Manfrinati, Sol Fittipaldi, Vicente Medel, Daniela Olivares, Görsev G Yener, Javier Escudero, Claudio Babiloni, Robert Whelan, Bahar Güntekin, Harun Yırıkoğulları, Hernando Santamaria-Garcia, Alberto Fernández Lucas, David Huepe, Gaetano Di Caterina, Marcio Soto-Añari, Agustina Birba, Agustin Sainz-Ballesteros, Carlos Coronel-Oliveros, Amanuel Yigezu, Eduar Herrera, Daniel Abasolo, Kerry Kilborn, Nicolás Rubido, Ruaridh A Clark, Ruben Herzog, Deniz Yerlikaya, Kun Hu, Mario A Parra, Pablo Reyes, Adolfo M García, Diana L Matallana, José Alberto Avila-Funes, Andrea Slachevsky, María I Behrens, Nilton Custodio, Juan F Cardona, Pablo Barttfeld, Ignacio L Brusco, Martín A Bruno, Ana L Sosa Ortiz, Stefanie D Pina-Escudero, Leonel T Takada, Elisa Resende, Katherine L Possin, Maira Okada de Oliveira, Alejandro Lopez-Valdes, Brian Lawlor, Ian H Robertson, Kenneth S Kosik, Claudia Duran-Aniotz, Victor Valcour, Jennifer S Yokoyama, Bruce Miller, Agustin Ibanez\",\"doi\":\"10.1038/s41591-024-03209-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.</p>\",\"PeriodicalId\":19037,\"journal\":{\"name\":\"Nature Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":58.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41591-024-03209-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-024-03209-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑时钟可量化脑年龄与实际年龄之间的差异,有望帮助人们了解大脑健康和疾病。然而,多样性(包括地理、社会经济、社会人口、性别和神经退化)对脑年龄差距的影响尚不清楚。我们分析了来自 15 个国家(7 个拉丁美洲和加勒比国家(LAC)和 8 个非 LAC 国家)的 5306 名参与者的数据集。基于高阶交互,我们为功能磁共振成像(2953 人)和脑电图(2353 人)开发了脑年龄差距深度学习架构。数据集包括健康对照组和轻度认知障碍、阿尔茨海默病和行为变异性额颞叶痴呆症患者。与非 LAC 模型相比,LAC 模型显示了与前胸网络相关的更老的脑年龄(功能磁共振成像:平均方向误差 = 5.60,均方根误差 (r.m.s.e.) = 11.91;脑电图:平均方向误差 = 5.34,均方根误差 (r.m.s.e.) = 9.82)。结构性社会经济不平等、污染和健康差异是脑年龄差距扩大的重要预测因素,尤其是在拉丁美洲和加勒比地区(R² = 0.37,F² = 0.59,r.m.s.e. = 6.9)。我们发现,从健康对照组到轻度认知障碍再到阿尔茨海默病,脑年龄差距呈上升趋势。在拉丁美洲和加勒比地区,我们观察到对照组和阿尔茨海默病组女性的脑年龄差距大于相应的男性。这些结果无法用信号质量、人口统计学或采集方法的变化来解释。这些发现为捕捉大脑加速衰老的多样性提供了一个定量框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations.

Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations.

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信