{"title":"评估使用氟烷基改性硅胶的氟亲和性以及有机溶剂中多氟烷基物质的选择性分离。","authors":"Atsuya Tadano, Yoshiyuki Watabe, Tetsuya Tanigawa, Sayaka Konishi-Yamada, Takuya Kubo","doi":"10.1002/jssc.202400121","DOIUrl":null,"url":null,"abstract":"<p>In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of fluorous affinity using fluoroalkyl-modified silica gel and selective separation of poly-fluoroalkyl substances in organic solvents\",\"authors\":\"Atsuya Tadano, Yoshiyuki Watabe, Tetsuya Tanigawa, Sayaka Konishi-Yamada, Takuya Kubo\",\"doi\":\"10.1002/jssc.202400121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.</p>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400121\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400121","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Evaluation of fluorous affinity using fluoroalkyl-modified silica gel and selective separation of poly-fluoroalkyl substances in organic solvents
In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.