Maryam Sinaei, Saba Sekhavat, Jaber Zafari, Atousa Moradzadegan
{"title":"光生物调节对治疗乳腺癌的 3T3-L1 细胞条件培养基的影响","authors":"Maryam Sinaei, Saba Sekhavat, Jaber Zafari, Atousa Moradzadegan","doi":"10.34172/jlms.2024.22","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Breast cancer ranks among the most prevalent malignancies, and its prompt diagnosis significantly amplifies the prospects of successful treatment. Approximately one in seven women will experience a breast cancer diagnosis in their lifetime. Stromal cells and their secreted factors exert various effects on tumor growth, impacting proliferation, invasion, and metastasis. Research has emphasized the significant impact of proteins secreted by adipose tissue on breast cancer proliferation, surpassing the influence of factors released by other cell types. Yet, the specific transcription factors and cofactors involved in adipokine expression in the tumor microenvironment remain enigmatic. <b>Methods:</b> In this study, adipocyte cells were cultured and exposed to 980 nm and 650 nm Photobiomodulation. The MDA-MD-231 cells (triple negative cancer cell line) were cultured with a conditioned medium from laser-treated cells. The real-time assay was employed to analyze the gene expression level changes involved in apoptosis. <b>Results:</b> Results showed that the irradiated conditioned medium at 980 nm and 650 nm caused a reduction in cell viability of cancer cells. Conversely, the conditioned medium from the irradiated cells triggered an increase in the expression of <i>Caspase 3</i>, <i>Caspase 9</i>, and <i>BAX2</i> genes, alongside a decrease in <i>BCL2</i> gene expression. <b>Conclusion:</b> The findings highlighted the potential of the laser-treated conditioned medium to induce apoptosis pathways in cancer cells, demonstrating a promising avenue for further research in utilizing low-level laser therapy in breast cancer treatment.</p>","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345795/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effect of Photobiomodulation on the Conditioned Media of 3T3-L1 Cells in the Treatment of Breast Cancer.\",\"authors\":\"Maryam Sinaei, Saba Sekhavat, Jaber Zafari, Atousa Moradzadegan\",\"doi\":\"10.34172/jlms.2024.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> Breast cancer ranks among the most prevalent malignancies, and its prompt diagnosis significantly amplifies the prospects of successful treatment. Approximately one in seven women will experience a breast cancer diagnosis in their lifetime. Stromal cells and their secreted factors exert various effects on tumor growth, impacting proliferation, invasion, and metastasis. Research has emphasized the significant impact of proteins secreted by adipose tissue on breast cancer proliferation, surpassing the influence of factors released by other cell types. Yet, the specific transcription factors and cofactors involved in adipokine expression in the tumor microenvironment remain enigmatic. <b>Methods:</b> In this study, adipocyte cells were cultured and exposed to 980 nm and 650 nm Photobiomodulation. The MDA-MD-231 cells (triple negative cancer cell line) were cultured with a conditioned medium from laser-treated cells. The real-time assay was employed to analyze the gene expression level changes involved in apoptosis. <b>Results:</b> Results showed that the irradiated conditioned medium at 980 nm and 650 nm caused a reduction in cell viability of cancer cells. Conversely, the conditioned medium from the irradiated cells triggered an increase in the expression of <i>Caspase 3</i>, <i>Caspase 9</i>, and <i>BAX2</i> genes, alongside a decrease in <i>BCL2</i> gene expression. <b>Conclusion:</b> The findings highlighted the potential of the laser-treated conditioned medium to induce apoptosis pathways in cancer cells, demonstrating a promising avenue for further research in utilizing low-level laser therapy in breast cancer treatment.</p>\",\"PeriodicalId\":16224,\"journal\":{\"name\":\"Journal of lasers in medical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers in medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jlms.2024.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
The Effect of Photobiomodulation on the Conditioned Media of 3T3-L1 Cells in the Treatment of Breast Cancer.
Introduction: Breast cancer ranks among the most prevalent malignancies, and its prompt diagnosis significantly amplifies the prospects of successful treatment. Approximately one in seven women will experience a breast cancer diagnosis in their lifetime. Stromal cells and their secreted factors exert various effects on tumor growth, impacting proliferation, invasion, and metastasis. Research has emphasized the significant impact of proteins secreted by adipose tissue on breast cancer proliferation, surpassing the influence of factors released by other cell types. Yet, the specific transcription factors and cofactors involved in adipokine expression in the tumor microenvironment remain enigmatic. Methods: In this study, adipocyte cells were cultured and exposed to 980 nm and 650 nm Photobiomodulation. The MDA-MD-231 cells (triple negative cancer cell line) were cultured with a conditioned medium from laser-treated cells. The real-time assay was employed to analyze the gene expression level changes involved in apoptosis. Results: Results showed that the irradiated conditioned medium at 980 nm and 650 nm caused a reduction in cell viability of cancer cells. Conversely, the conditioned medium from the irradiated cells triggered an increase in the expression of Caspase 3, Caspase 9, and BAX2 genes, alongside a decrease in BCL2 gene expression. Conclusion: The findings highlighted the potential of the laser-treated conditioned medium to induce apoptosis pathways in cancer cells, demonstrating a promising avenue for further research in utilizing low-level laser therapy in breast cancer treatment.
期刊介绍:
The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)