Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare
{"title":"以营养保健品工业用芫荽籽为吸附剂对水中的艳绿阳离子染料进行生物修复:吸附等温线、动力学模型和热力学研究。","authors":"Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare","doi":"10.1080/15226514.2024.2391949","DOIUrl":null,"url":null,"abstract":"<p><p>The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, <i>q<sub>e</sub></i>, was roughly 110<b> </b>mg g<sup>-1</sup>. The result has a maximum adsorption of 136.17 mg g<sup>-1</sup> as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters Δ<i>G</i><sup>0</sup>, Δ<i>H</i><sup>0</sup>, and Δ<i>S</i><sup>0</sup> demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of Δ<i>H</i><sup>0</sup> specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies.\",\"authors\":\"Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare\",\"doi\":\"10.1080/15226514.2024.2391949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, <i>q<sub>e</sub></i>, was roughly 110<b> </b>mg g<sup>-1</sup>. The result has a maximum adsorption of 136.17 mg g<sup>-1</sup> as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters Δ<i>G</i><sup>0</sup>, Δ<i>H</i><sup>0</sup>, and Δ<i>S</i><sup>0</sup> demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of Δ<i>H</i><sup>0</sup> specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2391949\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2391949","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies.
The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, qe, was roughly 110mg g-1. The result has a maximum adsorption of 136.17 mg g-1 as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters ΔG0, ΔH0, and ΔS0 demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of ΔH0 specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.