以营养保健品工业用芫荽籽为吸附剂对水中的艳绿阳离子染料进行生物修复:吸附等温线、动力学模型和热力学研究。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare
{"title":"以营养保健品工业用芫荽籽为吸附剂对水中的艳绿阳离子染料进行生物修复:吸附等温线、动力学模型和热力学研究。","authors":"Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare","doi":"10.1080/15226514.2024.2391949","DOIUrl":null,"url":null,"abstract":"<p><p>The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, <i>q<sub>e</sub></i>, was roughly 110<b> </b>mg g<sup>-1</sup>. The result has a maximum adsorption of 136.17 mg g<sup>-1</sup> as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters Δ<i>G</i><sup>0</sup>, Δ<i>H</i><sup>0</sup>, and Δ<i>S</i><sup>0</sup> demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of Δ<i>H</i><sup>0</sup> specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies.\",\"authors\":\"Razia Sulthana, Syed Noeman Taqui, H N Deepa Kumari, Rayees Afzal Mir, Akheel Ahmed Syed, Hafiz Muhammad Saad, Muhammad Nasir Bashir, Yasser Fouad, Laxmikant Jathar, Sagar Shelare\",\"doi\":\"10.1080/15226514.2024.2391949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, <i>q<sub>e</sub></i>, was roughly 110<b> </b>mg g<sup>-1</sup>. The result has a maximum adsorption of 136.17 mg g<sup>-1</sup> as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters Δ<i>G</i><sup>0</sup>, Δ<i>H</i><sup>0</sup>, and Δ<i>S</i><sup>0</sup> demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of Δ<i>H</i><sup>0</sup> specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2391949\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2391949","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

文章详细介绍了利用低成本的芫荽籽作为营养保健品行业的副产品,通过吸附从水溶液中去除致突变染料亮绿(BG)的可行性研究。这项研究包括对影响吸附过程的参数进行分析。已确定的变量包括 pH 值、染料浓度、加工温度、吸附剂用量和吸附剂粒度。为了获得吸附过程的信息并设计实验平衡吸附系统的机理,应用了 10 种等温线模型,即 Langmuir、Freundlich、Jovanovic、Dubinin-Radushkevich、Sips、Redlich-Peterson、Toth、Vieth-Sladek、Brouers-Sotolongo 和 Radke-Prausnitz。结果发现,实验吸附容量 qe 约为 110 毫克 g-1。根据 Dubinin-Radushkevich 等温线的预测,实验结果的最大吸附量为 136.17 毫克/克。在确定吸附动力学时,使用了扩散膜模型、Dumwald-Wagner 和 Weber-Morris 模型以及伪一阶和二阶模型。结果发现,吸附动力学数据符合伪二阶模型。热力学分析表明这是一个物理过程。热力学参数 ΔG0、ΔH0 和 ΔS0 的值表明这是一个近乎自发的内热吸附过程。ΔH0值较小,说明这一过程是物理过程。傅立叶变换红外光谱和扫描电镜成像证实了 BG 染料在吸附剂表面的吸附。研究得出结论,NICSS 是一种从废水溶液中提取 BG 染料的有效吸附剂,提供了许多染料与吸附剂相互作用的可能性,并表明该过程可以按比例放大,以适应循环经济的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies.

The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, qe, was roughly 110 mg g-1. The result has a maximum adsorption of 136.17 mg g-1 as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters ΔG0, ΔH0, and ΔS0 demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of ΔH0 specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信