{"title":"利用响应面方法学和 Box-Behnken 实验装置优化分离 Ni (II) 和 Sm (III) 的乳液膜技术。","authors":"Benderrag Abdelkader, Benabela Imene, Annag Lahouaria, Haddou Boumediene, Kameche Mostefa, Maschke Ulrich","doi":"10.1080/09593330.2024.2386865","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the reliability of the emulsified liquid membrane (ELM) extraction technique for recovering and separating metals, focusing on Nickel (Ni(II)) and Samarium (Sm(III)), both used in electrochemical devices. Key contributions include determining optimal conditions for creating a stable water-in-oil (W/O) emulsion. The optimal conditions were found to be a 5-minute emulsification time, 4 wt.% Span 80 surfactant concentration, a 1.6 volume ratio of the internal phase to the organic phase, 1 M H2SO4 concentration for the internal phase, a 40/160 volume ratio of the emulsion to the external phase, and kerosene as the diluent. Factors affecting the separation of Ni(II) and Sm(III) included the concentrations of the internal aqueous phase, surfactant, and extractant. Under these conditions, an equimolar mixture of Ni(II) and Sm(III) was extracted within 15 min. The study emphasized the importance of phase volume ratio and surfactant concentration for emulsion stability and extraction efficiency. The response surface method (RSM) and Box-Behnken design were used to optimize influential factors, with a modified quadratic model predicting extraction yields of 83.81% for Sm(III) and 15% for Ni(II). The study demonstrates that effective separation of Ni(II) and Sm(III) ions is achievable using this technique, providing valuable insights into efficient and selective metal ion extraction, contributing to the broader field of metal recovery and recycling technologies.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1348-1368"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emulsion liquid membrane technique for optimal separation of Ni (II) and Sm (III) using response surface methodology and Box-Behnken experimental setup.\",\"authors\":\"Benderrag Abdelkader, Benabela Imene, Annag Lahouaria, Haddou Boumediene, Kameche Mostefa, Maschke Ulrich\",\"doi\":\"10.1080/09593330.2024.2386865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the reliability of the emulsified liquid membrane (ELM) extraction technique for recovering and separating metals, focusing on Nickel (Ni(II)) and Samarium (Sm(III)), both used in electrochemical devices. Key contributions include determining optimal conditions for creating a stable water-in-oil (W/O) emulsion. The optimal conditions were found to be a 5-minute emulsification time, 4 wt.% Span 80 surfactant concentration, a 1.6 volume ratio of the internal phase to the organic phase, 1 M H2SO4 concentration for the internal phase, a 40/160 volume ratio of the emulsion to the external phase, and kerosene as the diluent. Factors affecting the separation of Ni(II) and Sm(III) included the concentrations of the internal aqueous phase, surfactant, and extractant. Under these conditions, an equimolar mixture of Ni(II) and Sm(III) was extracted within 15 min. The study emphasized the importance of phase volume ratio and surfactant concentration for emulsion stability and extraction efficiency. The response surface method (RSM) and Box-Behnken design were used to optimize influential factors, with a modified quadratic model predicting extraction yields of 83.81% for Sm(III) and 15% for Ni(II). The study demonstrates that effective separation of Ni(II) and Sm(III) ions is achievable using this technique, providing valuable insights into efficient and selective metal ion extraction, contributing to the broader field of metal recovery and recycling technologies.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1348-1368\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2386865\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2386865","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Emulsion liquid membrane technique for optimal separation of Ni (II) and Sm (III) using response surface methodology and Box-Behnken experimental setup.
This study evaluated the reliability of the emulsified liquid membrane (ELM) extraction technique for recovering and separating metals, focusing on Nickel (Ni(II)) and Samarium (Sm(III)), both used in electrochemical devices. Key contributions include determining optimal conditions for creating a stable water-in-oil (W/O) emulsion. The optimal conditions were found to be a 5-minute emulsification time, 4 wt.% Span 80 surfactant concentration, a 1.6 volume ratio of the internal phase to the organic phase, 1 M H2SO4 concentration for the internal phase, a 40/160 volume ratio of the emulsion to the external phase, and kerosene as the diluent. Factors affecting the separation of Ni(II) and Sm(III) included the concentrations of the internal aqueous phase, surfactant, and extractant. Under these conditions, an equimolar mixture of Ni(II) and Sm(III) was extracted within 15 min. The study emphasized the importance of phase volume ratio and surfactant concentration for emulsion stability and extraction efficiency. The response surface method (RSM) and Box-Behnken design were used to optimize influential factors, with a modified quadratic model predicting extraction yields of 83.81% for Sm(III) and 15% for Ni(II). The study demonstrates that effective separation of Ni(II) and Sm(III) ions is achievable using this technique, providing valuable insights into efficient and selective metal ion extraction, contributing to the broader field of metal recovery and recycling technologies.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current