Renata Tj Fazoli, Luciano F Drager, Roberto Kalil-Filho, Giuliano Generoso
{"title":"心脏病学中的 RNA 干扰疗法:新靶点能否改善治疗目标?","authors":"Renata Tj Fazoli, Luciano F Drager, Roberto Kalil-Filho, Giuliano Generoso","doi":"10.7573/dic.2024-3-1","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of RNA interference in 1998 opened avenues for the manipulation of gene expression, leading to the development of small interfering RNA (siRNA) drugs. Patisiran, the first FDA-approved siRNA medication, targets hereditary transthyretin amyloidosis with polyneuropathy. Givosiran, lumasiran and nedosiran further expand siRNA applications in treating rare genetic diseases, demonstrating positive outcomes. In cardiology, inclisiran, approved for hypercholesterolaemia, showcases sustained reductions in LDL cholesterol levels. However, ongoing research aims to establish its impact on cardiovascular outcomes. Lipoprotein(a), an independent risk factor for atherosclerotic cardiovascular disease, has become a focus of siRNA therapies, precipitating the development of specific siRNA drugs like olpasiran, zerlasiran and lepodisiran, with promising reductions in lipoprotein(a) levels. Research to assess the effectiveness of these medications in reducing events is currently under way. Zodasiran and plozasiran address potential risk factors for cardiovascular diseases, targeting triglyceride-rich lipoproteins. Zilebesiran, which targets hepatic angiotensinogen mRNA, has demonstrated a dose-related reduction in serum angiotensinogen levels, thereby lowering blood pressure in patients with systemic arterial hypertension. The evolving siRNA methodology presents a promising future in cardiology, with ongoing studies assessing its effectiveness in various conditions. In the future, larger studies will provide insights into improvements in cardiovascular outcomes, long-term safety and broader applications in the general population. This review highlights the historical timeline of the development of siRNA-based drugs, their clinical indications, potential side-effects and future perspectives.</p>","PeriodicalId":11362,"journal":{"name":"Drugs in Context","volume":"13 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346576/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNA interference therapy in cardiology: will new targets improve therapeutic goals?\",\"authors\":\"Renata Tj Fazoli, Luciano F Drager, Roberto Kalil-Filho, Giuliano Generoso\",\"doi\":\"10.7573/dic.2024-3-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of RNA interference in 1998 opened avenues for the manipulation of gene expression, leading to the development of small interfering RNA (siRNA) drugs. Patisiran, the first FDA-approved siRNA medication, targets hereditary transthyretin amyloidosis with polyneuropathy. Givosiran, lumasiran and nedosiran further expand siRNA applications in treating rare genetic diseases, demonstrating positive outcomes. In cardiology, inclisiran, approved for hypercholesterolaemia, showcases sustained reductions in LDL cholesterol levels. However, ongoing research aims to establish its impact on cardiovascular outcomes. Lipoprotein(a), an independent risk factor for atherosclerotic cardiovascular disease, has become a focus of siRNA therapies, precipitating the development of specific siRNA drugs like olpasiran, zerlasiran and lepodisiran, with promising reductions in lipoprotein(a) levels. Research to assess the effectiveness of these medications in reducing events is currently under way. Zodasiran and plozasiran address potential risk factors for cardiovascular diseases, targeting triglyceride-rich lipoproteins. Zilebesiran, which targets hepatic angiotensinogen mRNA, has demonstrated a dose-related reduction in serum angiotensinogen levels, thereby lowering blood pressure in patients with systemic arterial hypertension. The evolving siRNA methodology presents a promising future in cardiology, with ongoing studies assessing its effectiveness in various conditions. In the future, larger studies will provide insights into improvements in cardiovascular outcomes, long-term safety and broader applications in the general population. This review highlights the historical timeline of the development of siRNA-based drugs, their clinical indications, potential side-effects and future perspectives.</p>\",\"PeriodicalId\":11362,\"journal\":{\"name\":\"Drugs in Context\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346576/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drugs in Context\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7573/dic.2024-3-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drugs in Context","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7573/dic.2024-3-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
RNA interference therapy in cardiology: will new targets improve therapeutic goals?
The discovery of RNA interference in 1998 opened avenues for the manipulation of gene expression, leading to the development of small interfering RNA (siRNA) drugs. Patisiran, the first FDA-approved siRNA medication, targets hereditary transthyretin amyloidosis with polyneuropathy. Givosiran, lumasiran and nedosiran further expand siRNA applications in treating rare genetic diseases, demonstrating positive outcomes. In cardiology, inclisiran, approved for hypercholesterolaemia, showcases sustained reductions in LDL cholesterol levels. However, ongoing research aims to establish its impact on cardiovascular outcomes. Lipoprotein(a), an independent risk factor for atherosclerotic cardiovascular disease, has become a focus of siRNA therapies, precipitating the development of specific siRNA drugs like olpasiran, zerlasiran and lepodisiran, with promising reductions in lipoprotein(a) levels. Research to assess the effectiveness of these medications in reducing events is currently under way. Zodasiran and plozasiran address potential risk factors for cardiovascular diseases, targeting triglyceride-rich lipoproteins. Zilebesiran, which targets hepatic angiotensinogen mRNA, has demonstrated a dose-related reduction in serum angiotensinogen levels, thereby lowering blood pressure in patients with systemic arterial hypertension. The evolving siRNA methodology presents a promising future in cardiology, with ongoing studies assessing its effectiveness in various conditions. In the future, larger studies will provide insights into improvements in cardiovascular outcomes, long-term safety and broader applications in the general population. This review highlights the historical timeline of the development of siRNA-based drugs, their clinical indications, potential side-effects and future perspectives.
期刊介绍:
Covers all phases of original research: laboratory, animal and human/clinical studies, health economics and outcomes research, and postmarketing studies. Original research that shows positive or negative results are welcomed. Invited review articles may cover single-drug reviews, drug class reviews, latest advances in drug therapy, therapeutic-area reviews, place-in-therapy reviews, new pathways and classes of drugs. In addition, systematic reviews and meta-analyses are welcomed and may be published as original research if performed per accepted guidelines. Editorials of key topics and issues in drugs and therapeutics are welcomed. The Editor-in-Chief will also consider manuscripts of interest in areas such as technologies that support diagnosis, assessment and treatment. EQUATOR Network reporting guidelines should be followed for each article type. GPP3 Guidelines should be followed for any industry-sponsored manuscripts. Other Editorial sections may include Editorial, Case Report, Conference Report, Letter-to-the-Editor, Educational Section.