在雌性猪左心室心源性休克模型中增加呼气末正压对心血管的影响

IF 9.1 1区 医学 Q1 ANESTHESIOLOGY
Oskar Kjærgaard Hørsdal, Kasper Lykke Wethelund, Nigopan Gopalasingam, Mads Dam Lyhne, Mark Stoltenberg Ellegaard, Ole Kristian Møller-Helgestad, Hanne Berg Ravn, Henrik Wiggers, Steffen Christensen, Kristoffer Berg-Hansen
{"title":"在雌性猪左心室心源性休克模型中增加呼气末正压对心血管的影响","authors":"Oskar Kjærgaard Hørsdal, Kasper Lykke Wethelund, Nigopan Gopalasingam, Mads Dam Lyhne, Mark Stoltenberg Ellegaard, Ole Kristian Møller-Helgestad, Hanne Berg Ravn, Henrik Wiggers, Steffen Christensen, Kristoffer Berg-Hansen","doi":"10.1097/ALN.0000000000005201","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiogenic shock (CS) presents a medical challenge with limited treatment options. Positive end-expiratory pressure (PEEP) during mechanical ventilation has been linked with clinical benefits in patients with CS. This study investigated whether increasing PEEP levels could unload the left ventricle (LV) in CS in a large animal model of LV-CS.</p><p><strong>Methods: </strong>Left ventricle cardiogenic shock was induced in 26 female pigs (60 kg) by microsphere injections into the left main coronary artery. In one study, protocol PEEP was increased (5, 10, and 15 cm H2O) and then reverted (15, 10, and 5 cm H2O) in 3-min intervals. In another protocol, PEEP increments with higher granularity were conducted through 3-min intervals (5, 8, 10, 13, and 15 cm H2O). Hemodynamic measurements were performed at all PEEP levels during a healthy state and in LV-CS with LV pressure-volume loops. The primary endpoint was pressure-volume area. Secondary endpoints included other mechanoenergetic parameters and estimates of LV preload and afterload.</p><p><strong>Results: </strong>Cardiac output (CO) decreased significantly in LV-CS from 4.5 ± 1.0 to 3.1 ± 0.9 l/min (P < 0.001). Increasing PEEP resulted in lower pressure-volume area, demonstrating a 36 ± 3% decrease in the healthy state (P < 0.001) and 18 ± 3% in LV-CS (P < 0.001) at PEEP 15 cm H2O. These effects were highly reversible when PEEP was returned to 5 cm H2O. Although mean arterial pressure declined with higher PEEP, CO remained preserved during LV-CS (P = 0.339). Increasing PEEP caused reductions in key measures of LV preload and afterload during LV-CS. The right ventricular stroke work index was decreased with increased PEEP. Despite a minor increase in heart rate at PEEP levels of 15 cm H2O (71 beats/min vs. 75 beats/min, P < 0.05), total mechanical power expenditure (pressure-volume area normalized to heart rate) decreased at higher PEEP.</p><p><strong>Conclusions: </strong>Applying higher PEEP levels reduced pressure-volume area, preserving CO while decreasing mean arterial pressure. Positive end-expiratory pressure could be a viable LV unloading strategy if titrated optimally during LV-CS.</p><p><strong>Editor’s perspective: </strong></p>","PeriodicalId":7970,"journal":{"name":"Anesthesiology","volume":" ","pages":"1105-1118"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiovascular Effects of Increasing Positive End-expiratory Pressure in a Model of Left Ventricular Cardiogenic Shock in Female Pigs.\",\"authors\":\"Oskar Kjærgaard Hørsdal, Kasper Lykke Wethelund, Nigopan Gopalasingam, Mads Dam Lyhne, Mark Stoltenberg Ellegaard, Ole Kristian Møller-Helgestad, Hanne Berg Ravn, Henrik Wiggers, Steffen Christensen, Kristoffer Berg-Hansen\",\"doi\":\"10.1097/ALN.0000000000005201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiogenic shock (CS) presents a medical challenge with limited treatment options. Positive end-expiratory pressure (PEEP) during mechanical ventilation has been linked with clinical benefits in patients with CS. This study investigated whether increasing PEEP levels could unload the left ventricle (LV) in CS in a large animal model of LV-CS.</p><p><strong>Methods: </strong>Left ventricle cardiogenic shock was induced in 26 female pigs (60 kg) by microsphere injections into the left main coronary artery. In one study, protocol PEEP was increased (5, 10, and 15 cm H2O) and then reverted (15, 10, and 5 cm H2O) in 3-min intervals. In another protocol, PEEP increments with higher granularity were conducted through 3-min intervals (5, 8, 10, 13, and 15 cm H2O). Hemodynamic measurements were performed at all PEEP levels during a healthy state and in LV-CS with LV pressure-volume loops. The primary endpoint was pressure-volume area. Secondary endpoints included other mechanoenergetic parameters and estimates of LV preload and afterload.</p><p><strong>Results: </strong>Cardiac output (CO) decreased significantly in LV-CS from 4.5 ± 1.0 to 3.1 ± 0.9 l/min (P < 0.001). Increasing PEEP resulted in lower pressure-volume area, demonstrating a 36 ± 3% decrease in the healthy state (P < 0.001) and 18 ± 3% in LV-CS (P < 0.001) at PEEP 15 cm H2O. These effects were highly reversible when PEEP was returned to 5 cm H2O. Although mean arterial pressure declined with higher PEEP, CO remained preserved during LV-CS (P = 0.339). Increasing PEEP caused reductions in key measures of LV preload and afterload during LV-CS. The right ventricular stroke work index was decreased with increased PEEP. Despite a minor increase in heart rate at PEEP levels of 15 cm H2O (71 beats/min vs. 75 beats/min, P < 0.05), total mechanical power expenditure (pressure-volume area normalized to heart rate) decreased at higher PEEP.</p><p><strong>Conclusions: </strong>Applying higher PEEP levels reduced pressure-volume area, preserving CO while decreasing mean arterial pressure. Positive end-expiratory pressure could be a viable LV unloading strategy if titrated optimally during LV-CS.</p><p><strong>Editor’s perspective: </strong></p>\",\"PeriodicalId\":7970,\"journal\":{\"name\":\"Anesthesiology\",\"volume\":\" \",\"pages\":\"1105-1118\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anesthesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/ALN.0000000000005201\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ALN.0000000000005201","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:心源性休克(CS)是一项医疗挑战,治疗方案有限。机械通气期间的呼气末正压(PEEP)与 CS 患者的临床获益有关。我们在一个大型 LV-CS 动物模型中研究了增加 PEEP 水平是否能为 CS 中的左心室(LV)减压:方法:通过向左冠状动脉主干注射微球,在 26 头雌性猪(60 千克)中诱导左心室-冠状动脉综合征。在一个研究方案中,每隔 3 分钟增加 PEEP(5、10 和 15 cmH2O),然后恢复 PEEP(15、10、5 cmH2O)。在另一个方案中,PEEP 以更高的粒度在 3 分钟间隔内增加(5、8、10、13 和 15 cmH2O)。在健康状态和 LV-CS 状态下,在所有 PEEP 水平下都进行了血流动力学测量,并带有 LV 压力-容积环路。主要终点是压力-容积面积(PVA)。次要终点包括其他机械能参数以及左心室前负荷和后负荷的估计值:结果:在 LV-CS 中,心输出量(CO)从 4.5±1.0 升/分钟显著下降到 3.1±0.9 升/分钟(PC 结论):应用较高的 PEEP 水平可减少 PVA,在降低 MAP 的同时保持 CO。如果在 LV-CS 期间对 PEEP 进行最佳调节,PEEP 可能是一种可行的 LV 卸载策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiovascular Effects of Increasing Positive End-expiratory Pressure in a Model of Left Ventricular Cardiogenic Shock in Female Pigs.

Background: Cardiogenic shock (CS) presents a medical challenge with limited treatment options. Positive end-expiratory pressure (PEEP) during mechanical ventilation has been linked with clinical benefits in patients with CS. This study investigated whether increasing PEEP levels could unload the left ventricle (LV) in CS in a large animal model of LV-CS.

Methods: Left ventricle cardiogenic shock was induced in 26 female pigs (60 kg) by microsphere injections into the left main coronary artery. In one study, protocol PEEP was increased (5, 10, and 15 cm H2O) and then reverted (15, 10, and 5 cm H2O) in 3-min intervals. In another protocol, PEEP increments with higher granularity were conducted through 3-min intervals (5, 8, 10, 13, and 15 cm H2O). Hemodynamic measurements were performed at all PEEP levels during a healthy state and in LV-CS with LV pressure-volume loops. The primary endpoint was pressure-volume area. Secondary endpoints included other mechanoenergetic parameters and estimates of LV preload and afterload.

Results: Cardiac output (CO) decreased significantly in LV-CS from 4.5 ± 1.0 to 3.1 ± 0.9 l/min (P < 0.001). Increasing PEEP resulted in lower pressure-volume area, demonstrating a 36 ± 3% decrease in the healthy state (P < 0.001) and 18 ± 3% in LV-CS (P < 0.001) at PEEP 15 cm H2O. These effects were highly reversible when PEEP was returned to 5 cm H2O. Although mean arterial pressure declined with higher PEEP, CO remained preserved during LV-CS (P = 0.339). Increasing PEEP caused reductions in key measures of LV preload and afterload during LV-CS. The right ventricular stroke work index was decreased with increased PEEP. Despite a minor increase in heart rate at PEEP levels of 15 cm H2O (71 beats/min vs. 75 beats/min, P < 0.05), total mechanical power expenditure (pressure-volume area normalized to heart rate) decreased at higher PEEP.

Conclusions: Applying higher PEEP levels reduced pressure-volume area, preserving CO while decreasing mean arterial pressure. Positive end-expiratory pressure could be a viable LV unloading strategy if titrated optimally during LV-CS.

Editor’s perspective:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anesthesiology
Anesthesiology 医学-麻醉学
CiteScore
10.40
自引率
5.70%
发文量
542
审稿时长
3-6 weeks
期刊介绍: With its establishment in 1940, Anesthesiology has emerged as a prominent leader in the field of anesthesiology, encompassing perioperative, critical care, and pain medicine. As the esteemed journal of the American Society of Anesthesiologists, Anesthesiology operates independently with full editorial freedom. Its distinguished Editorial Board, comprising renowned professionals from across the globe, drives the advancement of the specialty by presenting innovative research through immediate open access to select articles and granting free access to all published articles after a six-month period. Furthermore, Anesthesiology actively promotes groundbreaking studies through an influential press release program. The journal's unwavering commitment lies in the dissemination of exemplary work that enhances clinical practice and revolutionizes the practice of medicine within our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信