{"title":"KCa3.1 通道阻断剂 TRAM-34 和米诺环素可预防果糖诱发的大鼠高血压。","authors":"Abdelrahman Hamad, Melike Hacer Ozkan","doi":"10.1093/ajh/hpae115","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High fructose consumption increases blood pressure through microglia-related neuroinflammation in rats. Since intermediate-conductance calcium-activated potassium channels (KCa3.1) potentiates microglial reactivity, we examined whether the pretreatment with the KCa3.1 channel blocker TRAM-34 or minocycline prevents hypertension development in fructose-fed rats.</p><p><strong>Methods: </strong>The study involved male Wistar rats that were given either high fructose (10% in drinking water) or tap water for 21 days. Fructose groups also received minocycline or TRAM-34 systemically for 21 days. We measured systolic and diastolic blood pressure (SBP and DBP), heart rate (HR) periodically with tail-cuff; proinflammatory cytokines, and insulin levels in plasma via Enzyme-linked immunosorbent assay (ELISA), and neuroinflammatory markers in the nucleus tractus solitarii (NTS) by qPCR at the end of 21 days. We also examined endothelium-dependent hyperpolarization (EDH)-type vasorelaxations in isolated mesenteric arteries of the rats ex vivo.</p><p><strong>Results: </strong>SBP, DBP, and HR increased in the fructose group. Both minocycline and TRAM-34 significantly prevented these increases. Fructose intake also increased plasma interleukin-6, interleukin-1β, tumor necrosis factor-α, and insulin levels, whereas pretreatment with TRAM-34 prevented these increases as well. Iba-1, but not cluster of differentiation-86 levels were significantly higher in the NTS samples of fructose-fed hypertensive rats which implied microglial proliferation. EDH-type vasorelaxations mediated by endothelial KCa3.1 attenuated in the fructose group; however, TRAM-34 did not cause further deterioration in the relaxations.</p><p><strong>Conclusions: </strong>TRAM-34 is as effective as minocycline in preventing fructose-induced hypertension without interfering with EDH-type vasodilation. Furthermore, TRAM-34 relieves high fructose-associated systemic inflammation.</p>","PeriodicalId":7578,"journal":{"name":"American Journal of Hypertension","volume":" ","pages":"995-1002"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The KCa3.1 Channel Blocker TRAM-34 and Minocycline Prevent Fructose-Induced Hypertension in Rats.\",\"authors\":\"Abdelrahman Hamad, Melike Hacer Ozkan\",\"doi\":\"10.1093/ajh/hpae115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High fructose consumption increases blood pressure through microglia-related neuroinflammation in rats. Since intermediate-conductance calcium-activated potassium channels (KCa3.1) potentiates microglial reactivity, we examined whether the pretreatment with the KCa3.1 channel blocker TRAM-34 or minocycline prevents hypertension development in fructose-fed rats.</p><p><strong>Methods: </strong>The study involved male Wistar rats that were given either high fructose (10% in drinking water) or tap water for 21 days. Fructose groups also received minocycline or TRAM-34 systemically for 21 days. We measured systolic and diastolic blood pressure (SBP and DBP), heart rate (HR) periodically with tail-cuff; proinflammatory cytokines, and insulin levels in plasma via Enzyme-linked immunosorbent assay (ELISA), and neuroinflammatory markers in the nucleus tractus solitarii (NTS) by qPCR at the end of 21 days. We also examined endothelium-dependent hyperpolarization (EDH)-type vasorelaxations in isolated mesenteric arteries of the rats ex vivo.</p><p><strong>Results: </strong>SBP, DBP, and HR increased in the fructose group. Both minocycline and TRAM-34 significantly prevented these increases. Fructose intake also increased plasma interleukin-6, interleukin-1β, tumor necrosis factor-α, and insulin levels, whereas pretreatment with TRAM-34 prevented these increases as well. Iba-1, but not cluster of differentiation-86 levels were significantly higher in the NTS samples of fructose-fed hypertensive rats which implied microglial proliferation. EDH-type vasorelaxations mediated by endothelial KCa3.1 attenuated in the fructose group; however, TRAM-34 did not cause further deterioration in the relaxations.</p><p><strong>Conclusions: </strong>TRAM-34 is as effective as minocycline in preventing fructose-induced hypertension without interfering with EDH-type vasodilation. Furthermore, TRAM-34 relieves high fructose-associated systemic inflammation.</p>\",\"PeriodicalId\":7578,\"journal\":{\"name\":\"American Journal of Hypertension\",\"volume\":\" \",\"pages\":\"995-1002\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Hypertension\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1093/ajh/hpae115\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Hypertension","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1093/ajh/hpae115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
The KCa3.1 Channel Blocker TRAM-34 and Minocycline Prevent Fructose-Induced Hypertension in Rats.
Background: High fructose consumption increases blood pressure through microglia-related neuroinflammation in rats. Since intermediate-conductance calcium-activated potassium channels (KCa3.1) potentiates microglial reactivity, we examined whether the pretreatment with the KCa3.1 channel blocker TRAM-34 or minocycline prevents hypertension development in fructose-fed rats.
Methods: The study involved male Wistar rats that were given either high fructose (10% in drinking water) or tap water for 21 days. Fructose groups also received minocycline or TRAM-34 systemically for 21 days. We measured systolic and diastolic blood pressure (SBP and DBP), heart rate (HR) periodically with tail-cuff; proinflammatory cytokines, and insulin levels in plasma via Enzyme-linked immunosorbent assay (ELISA), and neuroinflammatory markers in the nucleus tractus solitarii (NTS) by qPCR at the end of 21 days. We also examined endothelium-dependent hyperpolarization (EDH)-type vasorelaxations in isolated mesenteric arteries of the rats ex vivo.
Results: SBP, DBP, and HR increased in the fructose group. Both minocycline and TRAM-34 significantly prevented these increases. Fructose intake also increased plasma interleukin-6, interleukin-1β, tumor necrosis factor-α, and insulin levels, whereas pretreatment with TRAM-34 prevented these increases as well. Iba-1, but not cluster of differentiation-86 levels were significantly higher in the NTS samples of fructose-fed hypertensive rats which implied microglial proliferation. EDH-type vasorelaxations mediated by endothelial KCa3.1 attenuated in the fructose group; however, TRAM-34 did not cause further deterioration in the relaxations.
Conclusions: TRAM-34 is as effective as minocycline in preventing fructose-induced hypertension without interfering with EDH-type vasodilation. Furthermore, TRAM-34 relieves high fructose-associated systemic inflammation.
期刊介绍:
The American Journal of Hypertension is a monthly, peer-reviewed journal that provides a forum for scientific inquiry of the highest standards in the field of hypertension and related cardiovascular disease. The journal publishes high-quality original research and review articles on basic sciences, molecular biology, clinical and experimental hypertension, cardiology, epidemiology, pediatric hypertension, endocrinology, neurophysiology, and nephrology.