Fabienne Battaglia-Brunet, Ivan Nancucheo, Jérôme Jacob, Catherine Joulian
{"title":"用于酸性矿井水处理和砷与金属选择性回收的硫化生物工艺。","authors":"Fabienne Battaglia-Brunet, Ivan Nancucheo, Jérôme Jacob, Catherine Joulian","doi":"10.1007/10_2024_264","DOIUrl":null,"url":null,"abstract":"<p><p>Human communities need water and mineral resources, the supply of which requires the implementation of recycling and saving strategies. Both closed and active mining sites could beneficiate of the implementation of nature-based solutions, including bioreactors involving sulphate-reducing prokaryotes (SRP), in order to separate and recover arsenic (As) and metals from aqueous stream while producing clean water. Selective precipitation strategies can be designed based on the selection of microbial communities adapted to the pH conditions, generally acidic, and to available low-cost electron donors. Laboratory batch and continuous experiments must be implemented for each type of mine water in order to determine the optimal flow-sheet in which As could be precipitated as sulphides (orpiment or realgar), inside the bioreactor or offline, through stripping of biologically produced hydrogen sulphides (H<sub>2</sub>S). The respective concentrations and proportions of As and metals and the initial acid mine drainage pH are key parameters that will influence the feasibility of efficient selective precipitation. SRP-based bioreactors could be combined with complementary treatment steps in optimised mine water management solutions that will minimise the production of As-contaminated end-solid waste.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulphidogenic Bioprocesses for Acid Mine Water Treatment and Selective Recovery of Arsenic and Metals.\",\"authors\":\"Fabienne Battaglia-Brunet, Ivan Nancucheo, Jérôme Jacob, Catherine Joulian\",\"doi\":\"10.1007/10_2024_264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human communities need water and mineral resources, the supply of which requires the implementation of recycling and saving strategies. Both closed and active mining sites could beneficiate of the implementation of nature-based solutions, including bioreactors involving sulphate-reducing prokaryotes (SRP), in order to separate and recover arsenic (As) and metals from aqueous stream while producing clean water. Selective precipitation strategies can be designed based on the selection of microbial communities adapted to the pH conditions, generally acidic, and to available low-cost electron donors. Laboratory batch and continuous experiments must be implemented for each type of mine water in order to determine the optimal flow-sheet in which As could be precipitated as sulphides (orpiment or realgar), inside the bioreactor or offline, through stripping of biologically produced hydrogen sulphides (H<sub>2</sub>S). The respective concentrations and proportions of As and metals and the initial acid mine drainage pH are key parameters that will influence the feasibility of efficient selective precipitation. SRP-based bioreactors could be combined with complementary treatment steps in optimised mine water management solutions that will minimise the production of As-contaminated end-solid waste.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2024_264\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2024_264","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Sulphidogenic Bioprocesses for Acid Mine Water Treatment and Selective Recovery of Arsenic and Metals.
Human communities need water and mineral resources, the supply of which requires the implementation of recycling and saving strategies. Both closed and active mining sites could beneficiate of the implementation of nature-based solutions, including bioreactors involving sulphate-reducing prokaryotes (SRP), in order to separate and recover arsenic (As) and metals from aqueous stream while producing clean water. Selective precipitation strategies can be designed based on the selection of microbial communities adapted to the pH conditions, generally acidic, and to available low-cost electron donors. Laboratory batch and continuous experiments must be implemented for each type of mine water in order to determine the optimal flow-sheet in which As could be precipitated as sulphides (orpiment or realgar), inside the bioreactor or offline, through stripping of biologically produced hydrogen sulphides (H2S). The respective concentrations and proportions of As and metals and the initial acid mine drainage pH are key parameters that will influence the feasibility of efficient selective precipitation. SRP-based bioreactors could be combined with complementary treatment steps in optimised mine water management solutions that will minimise the production of As-contaminated end-solid waste.
期刊介绍:
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.