Casey C. Day, Dominique Alò, Ryan K. Simmons, Stacy R. Cotey, Katherine E. Zarn, Ian F. Gazeley, Maureen Small, Marie-Josee Fortin, Andrew R. Bearlin, Seth R. Smith, Erin L. Landguth
{"title":"消除扩散、环境和人为障碍对水生系统功能连通性的影响。","authors":"Casey C. Day, Dominique Alò, Ryan K. Simmons, Stacy R. Cotey, Katherine E. Zarn, Ian F. Gazeley, Maureen Small, Marie-Josee Fortin, Andrew R. Bearlin, Seth R. Smith, Erin L. Landguth","doi":"10.1111/mec.17500","DOIUrl":null,"url":null,"abstract":"<p>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (<i>Oncorhynchus clarkii lewisi</i>). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems\",\"authors\":\"Casey C. Day, Dominique Alò, Ryan K. Simmons, Stacy R. Cotey, Katherine E. Zarn, Ian F. Gazeley, Maureen Small, Marie-Josee Fortin, Andrew R. Bearlin, Seth R. Smith, Erin L. Landguth\",\"doi\":\"10.1111/mec.17500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (<i>Oncorhynchus clarkii lewisi</i>). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17500\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17500","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems
Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms