{"title":"从响应特性研究间歇控制系统的瞬态过程","authors":"Jianbing Hu, Shuguang Li, Zhe Jin, Xiaochao Chao","doi":"10.1016/j.cnsns.2024.108309","DOIUrl":null,"url":null,"abstract":"<div><p>As we all know, the output of a system is affected by its input and response properties. When the input switches, there must exist a transient process in the output and this transient process is different for different systems due to their different response properties and different dynamic process. However, the response property and dynamic process have rarely been studied in the obtained achievements about the transient process of an intermittent control system. The obtained achievements cannot agree with the real physical process and cannot be applied to study the transient process in engineering.</p><p>By introducing the unit step function and taking the intermittent input signal as a piecewise signal, we have studied the transient process. Our research shows that the transient process is related to the response characteristics, historical dynamic information, and control parameters, which agrees well with the real system and can be applied to analyze and optimize the transient process in engineering. Some examples in our paper verify our theoretical achievements.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the transient process of an intermittent control system from its response property\",\"authors\":\"Jianbing Hu, Shuguang Li, Zhe Jin, Xiaochao Chao\",\"doi\":\"10.1016/j.cnsns.2024.108309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As we all know, the output of a system is affected by its input and response properties. When the input switches, there must exist a transient process in the output and this transient process is different for different systems due to their different response properties and different dynamic process. However, the response property and dynamic process have rarely been studied in the obtained achievements about the transient process of an intermittent control system. The obtained achievements cannot agree with the real physical process and cannot be applied to study the transient process in engineering.</p><p>By introducing the unit step function and taking the intermittent input signal as a piecewise signal, we have studied the transient process. Our research shows that the transient process is related to the response characteristics, historical dynamic information, and control parameters, which agrees well with the real system and can be applied to analyze and optimize the transient process in engineering. Some examples in our paper verify our theoretical achievements.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004945\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004945","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Studying the transient process of an intermittent control system from its response property
As we all know, the output of a system is affected by its input and response properties. When the input switches, there must exist a transient process in the output and this transient process is different for different systems due to their different response properties and different dynamic process. However, the response property and dynamic process have rarely been studied in the obtained achievements about the transient process of an intermittent control system. The obtained achievements cannot agree with the real physical process and cannot be applied to study the transient process in engineering.
By introducing the unit step function and taking the intermittent input signal as a piecewise signal, we have studied the transient process. Our research shows that the transient process is related to the response characteristics, historical dynamic information, and control parameters, which agrees well with the real system and can be applied to analyze and optimize the transient process in engineering. Some examples in our paper verify our theoretical achievements.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.